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Abstract
Traditional PID, active resonance and feed-forward con-

trollers are dominant strategies for cavity resonance control,

but performance may be limited for systems with tight de-

tuning requirements, as low as 10 Hz peak detuning (few

nanometers change in cavity length), that are affected by

microphonics and Lorentz Force Detuning. Microphonic

sources depend on cavity and cryomodule mechanical cou-

plings with their environment and come from several sys-

tems: cryoplant, RF sources, tuners, etc. A promising av-

enue to overcome the limitations of traditional resonance

control techniques is machine learning (ML) due to recent

theoretical and practical advances in these fields, and in par-

ticular Neural Networks (NN), which are known for their

high performance in complex and nonlinear systems with

large number of parameters and have been applied success-

fully in other areas of science and technology. In this pa-

per we introduce ML to LLRF control. An LCLS-II su-

perconducting cavity type system is simulated using the

Cryomodule-on-Chip (CMOC) model developed by LBNL

and is used to produce data for future training of NN. Future

work based on the experience and results of the present re-

search will be performed for resonance control systems to

overcome microphonics detuning of SRF cavities.

INTRODUCTION
Low Level Radio Frequency (LLRF) control systems aim

to control the amplitude and phase of the electric field used

in driving the cavities of particle accelerators. For X-ray

Free Electron Lasers (FELs), such as the Linac Coherent

Light Source II (LCLS-II), the quality of the X-rays produced

at the undulators is directly affected by the quality of the

electron beam accelerated with Superconductive RF cavities

(SRF). Therefore, tight stability requirements for the cavity

field’s amplitude and phase have to be achieved by the LLRF

control system [1].

Typically, amplitude and phase are controlled by the LLRF

through Proportional-Integral (PI) controllers implemented

in FPGAs. The goal of our research is to explore alterna-

tive control techniques based on ML, specifically a Neural

Network (NN) based controller, to further improve the per-

formance of the LLRF system. We present simulations of

how amplitude stability is impacted by several sources of
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noise, which are modelled by the CMOC software developed

at LBNL. The data obtained from these simulations will then

be used as training data for a NN-based controller.

Applying ML and controls have been developed in differ-

ent applications by members of this research team. Reza de-

veloped control systems to keep formation between 2 Cube-

Sats [2–4]. He also developed, different ML frameworks to

increase the efficiency of the formation control [5–7], simi-

lar techniques can be applied to the control of accelerator

components.

LLRF FOR LCLS-II
The LCLS-II upgrade includes a scheme for higher beam

energy, this is achieved with the addition of 35 cryomodules,

each with 8 superconducting accelerating cavities. The cavi-

ties are driven under a Single Source Single Cavity (SSSC)

topology, where 280 Solid State Amplifiers (SSA) will de-

liver RF power to 280 cavities [8].

A LLRF for LCLS-II has been designed and tested. It

has proven the ability to regulate the RF amplitude and

phase under the aforementioned stability requirements. This

system is now in a production phase, and installation will

begin at the SLAC gallery soon. The LLRF system is based

on a basic PI controller [9], and is depicted in Fig. 1.

Figure 1: Diagram of a PI Controller.

The proportional gain, kp , increases the gain of the closed

loop and the integral gain, ki , minimizes the steady state

error. A nominal configuration with kp = 1200 and ki =

3.8×107 has been chosen for the control system [10].

Cavity Model
A model of the system encompassing the superconducting

cavity, the LLRF control system and the cryomodule was

developed by the LLRF team at LBNL and has been used

to study the performance of electrodynamic system. For a
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cavity with several electromagnetic modes, each mode can

be represented by a circuit model [9], see Fig. 2.

Figure 2: Circuit model of a resonant mode in a cavity.

The dynamics of the system is described with the follow-

ing system of differential equations [9]:

V = Se jθ, (1)

dθ
dt
= wd, (2)

dS
dt
= −w f S + w f e−jθ (2Kg

√
Rg − Rb I), (3)

where V is a representative measure of energy stored in each

mode with magnitude S and phase θ, wd is the detuning

frequency, w f is the cavity’s bandwidth, Kg is the incident

wave amplitude, Rg is the coupling impedance of the beam

and I is the beam current.

CMOC SIMULATION RESULTS
Using the CMOC code, simulations of amplitude control

have been performed with different sources of noise. Fig-

ures 3 and 4 show the cavity field amplitude when the beam

is active. Upper and lower limits are shown as references

for the stability requirements on the LLRF system. It can be

seen how under feed-forward control, the amplitude lies in-

side the limits during the beam activation time. In Fig. 5 we

can see the effect of detuning the cavity, still the amplitude

is controlled and stays under the specified limits. Finally,

Fig. 6 shows the effect of measurement noise in the ampli-

tude: higher levels of noise will be amplified by the LLRF

and that noise will be send to the SSA.

Figure 7 shows measurement noise levels in the range 130

to 260 dBc/Hz, where three different gain configurations

[10] and amplitude error where simulated. As expected,

higher noise levels produce higher error and higher gain also

produces higher error due to amplification of the noise in

the feedback loop. Data produced under different conditions

and configurations will be used to feed the ML block, which

is described in the following section.

EXPLORATION OF NEW AI CONTROL
TECHNIQUES

Particle accelerators and most of their subcomponents,

the LLRF for example, are complex systems with multiple

variables and time-scales. These variables dictate both the

Figure 3: Beam loading noise without feed-forward.

Figure 4: Beam loading noise with feed-forward.

Figure 5: Detuning with feed-forward.

Figure 6: Measurement noise.

Figure 7: Signal error under different levels of measurement

noise and gain configurations.
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complexity of the system and the performance of the ma-

chine. Artificial Intelligence (AI), understanding by it a

set of learning and optimization algorithms, can potentially

provide us with new techniques for controlling accelerator

components in a more efficient way. The increase in accelera-

tor performance is a direct result of the algorithm optimizing

a set of driving parameters given the complex correlations

that may be present in the diagnostic data available from the

machine or simulations. With the goal of further increasing

the performance of SRF accelerators and in particular, to

increase the RF field stability of cavities, we are exploring

different control techniques based on ML.

For the LLRF system, an AI framework includes an opti-

mization phase and a learning phase in order to define the

optimal parameters for the system. Figure 8 represents this

approach.

Figure 8: Artificial Intelligence framework.

In the optimization phase, a loss function, composed by

the measurement of the RMS error and energy, is minimized

through a multi-objective genetic algorithm (GA) [11]. The

inputs to the optimization algorithm are the signals of the cav-

ity. The outputs of this optimization are the settling time, the

RMS steady state error, and the energy. The minimization

of the cost fuction gives optimum values of the proportional

and integral gains in the control systems for each of the in-

put signals. The data produced by this algorithm is a set of

inputs and their corresponding optimal parameters, which

are fed into the ML algorithms. Figure 9 represents the ML

algorithms in more detail.

The first component of the ML algorithm is a Gaussian

process (GP) regression [12], which estimates the energy

corresponding to the signal conditions and achieved error,

together with a confidence interval of the estimation. The

second one is a deep learning (DL) [13] structure that esti-

mates then optimal parameters for these signal conditions.

The network also estimates a confidence interval of the pre-

dicted parameters.

Finally, Fig. 10 shows the algorithm used in the DL frame-

work. This will be implemented in TensorFlow and pro-

cessed using High Performance Computer (HPC) resources.

TensorFlow is a Python based toolwork for AI and can op-

Figure 9: Deep learning and GP learning.

timally implement the learning algorithm with the huge

amounts of data on the many cores of an HPC. The DL

architecture is designed where the fitness function for this

optimization process is the Mean Absolute Percentage Error

(MAPE).

Figure 10: Deep learning architecture.

SUMMARY AND FUTURE WORK
In this research, an advanced control technique is being

developed based on ML algorithms to improve the perfor-

mance of existing PI controllers for LLRF systems. A ML

algorithm can select the optimal proportional and integral

gains with a more satisfactory performance. The applicaltion

of AI in general and ML techniques in particular to improve

control systems that require high performance is a relatively

new approach that benefits of the superior performance in

data driven estimation of some ML techniques due to their

high complexity and efficient modern training criteria and

algorithms. In particular we have seen that DL and GP can

help to reduce the effect of noise in the control system with

a short computational time with respect to other traditional

approaches. Future work will include the development of

more advanced control techniques with the help of Machine

Learning and Artificial Intelligence. Additionally, these

techniques will be applied to other challenging problems

like microphonics, where current control approaches show

limited performance.
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