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Abstract
The action and phase jump method is a technique, based

on the use of turn-by-turn experimental data in a circular
accelerator, to find and measure local sources of magnetic
errors through abrupt changes in the values of action and
phase. At this moment, this method uses at least one pair
of adjacent BPMs (Beam Position Monitors) to estimate the
action and phase at one particular position in the accelerator.
In this work, we propose a theoretical expression to describe
the trajectory of a charged particle for an arbitrary number
of turns when a magnetic error is present in the accelerator.
This expression might help to estimate action and phase at
one particular position of the accelerator using only one
BPM in contrast to the current method that needs at least
two BPMs

INTRODUCTION
The Action and Phase Jump Analysis Technique, known

as APJ method, is one of the available methods to estimate
local magnetic field errors. This method uses as a theoretical
argument that the action and phase in betatron oscillations
must be preserved in the absence of a magnetic error. This
method requires at least two adjacent BPMs to estimate the
action and phase variables as described in [1, 2].

In this paper, an analytical expression to describe a N-turn
trajectory is proposed considering the presence of a magnetic
error, which might provide an alternative way to compute
action and phase using only one BPM. First, the betatron
oscillations in an arbitrary BPM are described through a
first-order approximation for betatron oscillations in that
place where a magnetic error is present. Then, an improved
expression is obtained using perturbation theory. Finally,
the resulting expression is compared with simulated turn by
turn trajectories.

TURN BY TURN TRAJECTORY
Reference [1] shows that one-turn trajectory after the par-

ticle has passed through a magnetic error can be described
by

z(s) =
√

2Jz0 βz(s) sin
[
ψz(s) − δz0

]
+ θz

√
βz(s)βz(sθ ) sin [ψz(s) − ψz(sθ )]

=
√

2Jz1 βz(s) sin
[
ψz(s) − δz1

] (1)

where z denotes either the x or y axis, βz represent the
nominal beta functions, Jz0 (δz0 ) and Jz1 (δz1 ) are the actions
∗ yrodriguezga@unal.edu.co
† jfcardona@unal.edu.co

(phases) before and after the error, while ψz represents the
betatron function. Both J and δ remain constant except in
the error position, represented by sθ , where they suffer an
abrupt jump. The strength of the magnetic error θz can be
of any order: a dipole, a quadrupole, etc., and it can be
estimated by (15) from [1].

For the case in which there is more than one error, say m,
the left side of (1) takes the form given by

z(s) =
√

2Jz0 βz(s) sin
[
ψz(s) − δz0

]
+

m∑
i=1

θzi
√
βz(s)βz(si) sin [ψz(s) − ψz(si)] ,

(2)

where subscript i denotes the i-th magnetic error located
at s = si . It is easy to show that the value of z at any fixed
BPM placed in the longitudinal position s for a given number
of turns n can be calculated as follows

z(s,n) =
√

2Jz0 βz(s) sin
[
ψz(s) − δz0 + 2πQz(n − 1)

]
+

n∑
j=1

m∑
i=1

θzi, j
√
βz(s)βz(si)

· sin [ψz(s) − ψz(si) + 2πQz(n − j)] ,

(3)

with Qz being the nominal tune value and j the subscript
indicating the number of the turn. In the following and
without loss of generality, the orbit given by Eq. (3) will be
referred to the case z = x.

APPROXIMATION AT FIRST ORDER
According to equation (19) from [1], θxi can be written

from the multipolar expansion of the magnetic field as fo-
llows

θxi = B0i − B1i x(si) + A1iy(si) + 2A2i x(si)y(si)

+ B2i
[
−x2(si) + y2(si)

]
+ · · ·

(4)

where Bki and Aki correspond to the integrated skew and
normal quadrupole components of the i-th magnetic error,
and x(si), y(si) are the transverse coordinates of the orbit
at the error location. If only normal quadrupole errors are
considered, the Eq. (4) is reduced to

θxi = −B1i x(si). (5)

In practice, Eq. (3) could theoretically reproduce the
trajectory for n turns if x(si) values in Eq. (5) were available,
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but they should also be determined by Eq. (3). This leads
to a process of recursion that is difficult to generalize. The
proposed solution consists of an approximation for xj(si)
obtained from (1) and (3), which is given by

xj(si) =
√

2Jx0 βx(si) sin
[
ψx(s) − δx0 + 2πQx( j − 1)

]
+ θxi, j

√
βx(s)βx(si) sin [ψx(s) − ψx(si)]

≈ xj(si) =
√

2Jx0 βx(si) sin
[
ψx(s) − δx0 + 2πQx( j − 1)

]
,

(6)

because the second term on the right side of Eq. (6), which
contributes with the magnetic error θx , is much smaller than
the firs term.

If Eqs. (5) and (6) are substituted in Eq. (3), and after
performing some algebraic manipulations that involve the
use of special identities [3] that reduce the sum in j, it is
possible to obtain a new expression for x(s,n) given by

x(s,n) =
√

2Jx0 βx(s)
[
sin

(
ψx(s) − δx0 + 2πQx(n − 1)

]
+ Ft sin (2πQxn) −

nL
2

cos
[
ψx(s) − δx0 + 2πQx(n − 1)

] ]
,

(7)

where Ft is defined by

Ft =
csc(2πQx)

2
[
Fs sin

(
ψx + δx0

)
+ Fc cos

(
ψx + δx0

) ]
,

(8)
and Fs , Fc , and L are

Fs =

m∑
i

B1iβxi sin (2ψxi), Fc =

m∑
i

B1iβxi cos (2ψxi)

L =
m∑
i

B1iβxi

(9)

with βxi=βx(si) and ψxi = ψx(si) for convenience. The
new form for x(s,n) in Eq. (7) allows to reproduce ex-
perimental trajectories using the nominal lattice functions
such as β and ψ, and the initial action and phase constants
(Jx0, δx0) which can be determined as described in [1]. Al-
though in principle the constants Ft and L are unknown, they
should contain the information of the quadrupole magnetic
errors.

APPROXIMATION AT SECOND ORDER
FROM PERTURBATION THEORY

An improved expression for x(s,n) can be obtained if the
perturbation theory is used to evaluate xj(si) in Eq. (5),
but this time using the result obtained in Ec. (7). This
requires that the sum in j of Eq. (3) has to be expanded

again. As a result of this idea and after extensive algebraic
manipulations, a second form is reached for the multiturn
x(s,n) according to

x(s,n) =
√

2Jx0 βx(s)
[
sin

(
ψx(s) − δx0 + 2πQx(n − 1)

)
+
(
As0 + As1n + As2n2

)
sin (2πQxn)

+
(
Ac1n + Ac2n2 cos (2πQxn)

) ]
,

(10)

where the coefficients As0, As1, Ac1, As2 and Ac2 are
functions of a set of five parameters: Ft , L and three others
similar to them. Since these functions Ask and Ack involve
products with each other of such parameters, then it is pos-
sible to neglect those second order terms due to these are
much smaller than the unit, according to the reasoning done
in the previous section. With this in mind, the resulting
expressions for Ask and Ack are described by

As0 = Ft, As1 =
L
2

sin
(
ψx − 2πQx − δx0

)
,

Ac1 =
L
2

cos
(
ψx − 2πQx − δx0

)
,

As2 = −
L2

8
cos

(
ψx − 2πQx − δx0

)
,

Ac2 = −
L2

8
sin

(
ψx − 2πQx − δx0

)
.

(11)

From this result it is clear that coefficients As and Ac,
and therefore the parameters Ft and L, can be estimated by
fitting the experimental data to Eq. (10). In particular Ft
and L can be calculated with high accuracy as shown in the
next section.

On the other hand, an interesting consequence of this
proposal is that it is possible to determine approximately
the canonically conjugate variable of x(s,n), that is, x ′(s,n),
simply by taking the derivative of Eq. (10) with respect to
the position coordinate s. Then, it can be shown that

x ′(s,n) = −
αx(s)
βx(s)

x(s,n)

+

√
2Jx0

βx(s)
[
cos(ψx(s) + 2πQx(n − 1) − δx0 )

+
(
Bs0 + Bs1n + Bs2n2

)
sin(2πQxn)

+
(
Bc0 + Bc1n + Bc2n2

)
cos(2πQxn)

]
,

(12)

with

Bsk = βx(s)
dAsk(s)

ds
, Bck = βx(s)

dAck(s)
ds

. (13)

As with x(s,n), x′(s,n) is also a function that only depends
on the nominal lattice functions and the coefficients from
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Eq. (11), as observed in Eqs. (12) and (13). The benefit
of having x(s,n) and x ′(s,n) simultaneously for a position s
and a specific turn n implies that it is possible to calculate
the action and phase after the quadrupole error using the
collected information in a single BPM, as can be read from

δx1 = ψx(s) − tan−1
[

x(s,n)
αx(s)x(s,n) + βx(s)x ′(s,n)

]
Jx1 =

x2(s,n)
2βx(s) sin2 [ψx(s) − δx1

] (14)

COMPARISON OF ANALYTICAL MODEL
WITH SIMULATED DATA

Simulated LHC trajectories are generated with MADX [4],
which is able to simulate turn by turn trajectories. Magnetic
errors are simulated by setting to a certain strength a normal
quadrupole at sθ = 21747 m where a BPM of an arc is
installed.

(a)

(b)

Figure 1: (a) Difference between simulated multi-turn trajec-
tories with the first and second order analytical expressions
from Eqs. (7) (red) and (10) (blue), respectively. (b) Relative
difference between simulated data and analytical expression
for the both same cases in (a).

Figure 1 shows the difference ∆x(s,n) between simulation
and the analytical expressions for x(s,n) in Eqs. (7) and (10).
In both cases the discrepancy of the model with respect to
the simulation is less than 1% on average, at least for the first
50 turns. But the expression given by (13) is especially close
to the simulation as can be seen from the blue curve, with a
relative difference less than 0.5%. Therefore, a very large
number of turns is not required to determine with certain
accuracy the values of x ′(s,n), and finally estimate the values
of Jz1 and δz1 .

In addition, the values of Ft and L were calculated from
Eq. (11) by fitting the simulated data to the expression (10).

These have been compared with theoretical values given in
Eqs. (8) and (9), obtaining relative differences around 0.1%
and 0.04%, respectively.

Finally, Table 1 shows the relative difference between
the obtained Jx1 and δx1 from Eq. (14) and the same quan-
tities obtained through the usual APJ technique with two
BPMS, for different turns. The agreement reached between
both methods demonstrates that it would be possible to use
a single BPM to calculate the action and phase constants,
especially in the IRs where the number of BPMs is limited.

Table 1: Relative differences of the action and phase con-
stants obtained from Ec. (17) and using Eq. (2) from [2].

No. Turn ∆Jx1/Jx1 [%] ∆δx1/δx1 [%]

5 0.01 0.0005
15 0.01 0.004
50 0.02 0.002

CONCLUSION
An alternative analytical expression has been proposed

to describe a multiturn trajectory x(s,n) at a point after the
position of a quadrupole error using perturbation theory.
From this result it is also possible to calculate the canonically
conjugate variable x ′(s,n). With this available information,
the action and phase constants were obtained and compared
with the same quantities obtained from the APJ technique
which uses two BPMs, achieving a good agreement.
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