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Abstract
Efficient and accurate estimate of high-brightness electron

beam dynamics is an important step to the overall perfor-
mance evaluation in modern particle accelerators. Utiliz-
ing the moment description to study multi-particle beam
dynamics, it is necessary to develop a path-dependent trans-
port matrix, together with application of the drift-kick al-
gorithm. In this paper we will construct semi-analytical
models for two typical beam transport elements, solenoid
with fringe fields and transverse deflecting cavity. To con-
struct the semi-analytical models for these elements, we be-
gin by formulating the simplified single-particle equations
of motion, and apply numerical techniques to solve the cor-
responding six-by-six transport matrix as a function of the
path coordinate. The developed semi-analytical models are
demonstrated with practical examples, where the numerical
results are discussed, compared with and validated by par-
ticle tracking simulations. These path-dependent transport
matrix models can be incorporated to the analysis based on
beam matrix method for the application to high-brightness
charged-particle beam transport.

SEMI-ANALYTICAL MODELS
We note that the mathematical notations follow [1].

Solenoid with Fringe Field
Assuming the longitudinal magnetic field Bs is collinear

with z, to first order in the spatial (circular cylindrical) co-
ordinate, we have the radial and azimuthal magnetic field
components Br ≈ − r

2 B′
s and Bϕ = 0, respectively. Here

r is the radial distance from the solenoid axis. Written in
Cartesian coordinate, we have B =

(
− 1

2 B′
sx,− 1

2 B′
sy,Bs

)
.

Neglecting the longitudinal effect of the solenoid, which
is of the second order [2], we can write down the single-
particle equations of motion in the transverse phase space
coordinate X4D = (x, x ′, y, y′) as [2]

x ′′ = S(s)y′ +
1
2
S′(s)y, (1a)

y′′ = −S(s)x ′ −
1
2
S′(s)x, (1b)

where S(s) = eBs(s)/γmβc = Bs(s)/[Bρ] with [Bρ] the
beam rigidity. The formula [Bρ] (T-m) = 3.3356×βE(GeV)

can be of practical use.
Here we recommend that the interested reader to [3] for

a more detailed discussion of single-particle dynamics in
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a solenoid magnetic field. For convenience of the subse-
quent analysis, we perform a coordinate rotation in complex
notation and define ηL = xL + iyL , with the subscript L de-
noting a (complex) quantity in Larmor frame. The solution
to Eq. (1) can be generally expressed as[

ηL

η′L

]
s

=

(
ML,11 ML,12
ML,21 ML,22

) [
ηL

η′L

]
si

. (2)

Note that ML,i j is also a complex quantity in Larmor frame.
The evolution equations for ML,i j can be written as [2]

dML,11

ds
= ML,21,

dML,12

ds
= ML,22, (3a)

dML,21

ds
= −

i
2
S′(s)ML,11 − i1S(s)ML,21, (3b)

dML,22

ds
= −

i
2
S′(s)ML,12 − iS(s)ML,22. (3c)

Now we convert ηL to xL and yL by taking the real and
imaginary parts, respectively. The 2 × 2 matrix in Eq. (2)
now becomes 4 × 4 with

xL
x ′
L

yL

y′L

 s
=

©«
MRe

L,11 MRe
L,12 −M Im

L,11 −M Im
L,12

MRe
L,21 MRe

L,22 −M Im
L,21 −M Im

L,22
M Im

L,11 M Im
L,12 MRe

L,11 MRe
L,12

M Im
L,21 M Im

L,22 MRe
L,21 MRe

L,22

ª®®®®¬

xL
x ′
L

yL

y′L

 si
,

(4)
where the superscripts Re and Im denote the real and
imaginary part of a matrix element, respectively. As a fi-
nal step, we transform the quantities from Larmor frame
back to the Lab frame by R−1 (Lab → Larmor), where
R (Lab → Larmor) =

©«
cos∆θL 0 sin∆θL 0

−∆θ ′L sin∆θL cos∆θL ∆θ ′L cos∆θL sin∆θL
− sin∆θL 0 cos∆θL 0

−∆θ ′L cos∆θL − sin∆θL −∆θ ′L sin∆θL cos∆θL

ª®®®¬ ,
(5)

with Larmor angle defined as ∆θL = − 1
2

s∫
s0

S(ζ)dζ . Here

positive Bs gives positive Larmor angle (i.e., e < 0).
From the above analysis, given the longitudinal magnetic

field profile Bs , we can numerically solve Eq. (3) [by using
a standard finite difference scheme, for example] to obtain
ML(s). Multiplying the inverse matrix of Eq. (5) with the
obtained ML(s) and appending the longitudinal block matrix
as a drift section of the length ranging from s = 0 to s = Lsol
thus gives the 6×6 transport matrix Msol(s) for the solenoid.
The resulting transport matrix is s-dependent and includes
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the effect of fringe fields. Here we comment that, as for
construction of the solenoid transport matrix with fringe
fields, Migliorati and Dattoli [4] proceeds with analytical
analysis of Eq. (3) by introducing the umbral variable and
gave an exact solution to Eq. (3) as a function of s.

Transverse Deflecting Structure (TDS)
Let us consider a circular-cylindrical cavity with TM110

mode. The explicit field expressions can be analytically
obtained [5, 6]. Under paraxial approximation the fields
inside TDS can be approximately expressed as By =

B0 cos (ωt + ϕ0) and Ez = −B0ωx sin (ωt + ϕ0) (ϕ0 is the
initial phase seen by the passing electron at the entrance
of TDS). Given the simplified field expressions, we may
construct the single-particle equations of motion based on
Lorentz force equation. Let us write the 6-D phase space
coordinate as X = (r,p). Then we have dp/dt = F =
−e (E + cβ × B) and dr/dt = p/γm, γ = 1

/√
1 − β2, β =

v/c. The equations of motion can be explicitly written as

dpx

dt
= evzB0 cos (ωt + ϕ0) ,

dpy
dt
= 0, (6a)

dpz
dt
= eB0ωx sin (ωt + ϕ0) + evxB0 cos (ωt + ϕ0) , (6b)

dx
dt
=

px

γm
,

dy
dt
=

py
γm
,

dz
dt
=

pz
γm
. (6c)

Having obtained the single-particle equations of motion,
we will track a few representative particles at each location s,
and then extract the total of 36 transport matrix elements (at
each s). We will illustrate the numerical procedures below.
For simplicity, we only consider the 4-D (x, x ′, z, z′) case. It
is straightforward to extend to 6-D case by including (y, y′).
Assume we have sixteen independent representative parti-
cles, of which the individual 4-D phase space coordinate
denotes X(i)

4D =
(
x(i), x ′(i), z(i), z′(i)

)
, where i = 1 ∼ 16. Our

goal is to find the sixteen transport matrix elements corre-
sponding to Eq. (6). For a total of sixteen representative
particles, the full set of linear transport equations can be
written as Zi

16×16Ri→ f
16×1(s) = Z f

16×1(s), where Zi
16×16 con-

tains four block diagonal matrices with

Zi
16×16 =

©«
Z

(1−4)
4×4 0 0 0
0 Z

(5−8)
4×4 0 0

0 0 Z
(9−12)
4×4 0

0 0 0 Z
(13−16)
4×4

ª®®®®¬
, (7)

with Z
(1−4)
4×4 =

[
X(1)

4D X(2)
4D X(3)

4D X(4)
4D

]T
.

Since Zi
16×1 is given and Z f

16×1(s) are already obtained
by numerically integrating Eqs. (6), we can find Ri→ f

16×1(s)
at each s by inverting Zi

16×16. The standard form of 6 × 6
transport matrix (at each s) can be obtained by reshaping
Ri→ f

16×1(s). Here we note that an excellent and thorough dis-
cussion of beam dynamics in a TDS and its practical cavity
cell design can be found in [7] using particle tracking simu-
lation ASTRA [8].

NUMERICAL COMPARISONS
Solenoid with Fringe Field

For the case of a solenoid with fringe field, a longitudinal
magnetic field profile Bs along s is constructed as follows

Bs(s) = Bz0

erf
(
s−Lsol/4

κ

)
− erf

(
s−3Lsol/4

κ

)
2erf

(
Lsol
2κ

) , (8)

where Bz0 is the uniform flattop field amplitude, Lsol is the
total length of the solenoid, and κ is characteristic of the
(symmetric) fall-off fringe fields. In Eq. (8), the smaller
the κ is, the sharper the edge field will be. In the following
numerical example, we choose κ = 0.01.

Given Bs(s), S(s) can be obtained. According to Eq. (3),
the 4×4 transport matrix in Larmor frame can be numerically
integrated. Transforming back to the Lab frame by Eq. (5)
and appending the longitudinal block matrix as a drift section
give the 6 × 6 solenoid transport matrix as a function of s.
In the following numerical setup, the uniform flattop Bz0 is
assumed 0.05 T, the total length of the solenoid Lsol = 0.1
m, and the beam energy is set 3 MeV. Having obtained the
6 × 6 single-particle transport matrix for the solenoid as
a function of s, we can evaluate the multi-particle beam
dynamics by propagating the beam sigma matrix according
to the method outlined in [1], illustrated in Fig. 1. In the
figure we also compare our semi-analytical calculation with
particle tracking simulations by ASTRA [8] and obtain a
good agreement.

Figure 1: (a) Transverse rms beam size as a function of s;
(b) transverse rms beam divergence as a function of s; (c)
transverse x− y′ correlation as a function of s; (d) transverse
emittances as a function of s. The red line in (d) refers to
the transverse 4-D emittance, which is conserved along s.

Having obtained the solenoid transport matrix and the evo-
lution of beam properties along s, we may vary the solenoid
field amplitude Bz0 to see the dependence of the transverse
beam size and divergence at the exit. Figure 2 shows the re-
sults from our semi-analytical calculation with comparison
of particle tracking simulation [8]. Comparison with parti-
cle tracking simulation (blue dots in Fig. 2) shows a good
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agreement except for larger Bz0, where we think that the de-
viation may stem from the slightly different count of Larmor
angle in our semi-analytical model from the more accurate
calculation by ASTRA, in which the on-axis and off-axis
particles will receive slightly different Larmor angles.

Figure 2: (Left) beam size and (right) beam divergence at
the exit of the solenoid as a function of the field strength.
In the numerical setup, for the solenoid κ = 0.01 m and
Lsol = 0.1 m. The initial beam size is assumed 0.5 mm, with
the normalized emittance 1 µm.

Transverse Deflecting Structure (TDS)
According to Faraday’s law, the corresponding TDS volt-

age can be evaluated by VTDS = cB0LTDS, with LTDS the
length of the TDS. In the following numerical demonstra-
tion we will validate our semi-analytical model by the an-
alytical formulas for the bulk of TDS [5] and by particle
tracking simulation ELEGANT [9]. In the numerical setup,
the deflecting magnetic field B0 is assumed 0.05 T, which
corresponds to VTDS = 0.75 MV, the TM110 operating fre-
quency is set 3 GHz, the initial phase ϕ0 = 0, the total length
of the TDS LTDS = 0.05 m, and the beam energy is still set
3 MeV.

Figure 3 draws typical beam characteristics as a function
of the deflecting strength B0 at the exit. Since the TDS intro-
duces a transverse momentum to the beam, this momentum
will lead to possible increase of beam size via x − x ′ cor-
relation M12. Moreover this transverse momentum varies
with time (or, z), which means that the transverse defocusing
strength varies along z, and can eventually lead to growth of
projected beam emittance.

It is found that our semi-analytical model appears to over-
estimate the transverse defocusing, while the results from
ELEGANT tracking and analytical prediction give negli-
gible increase of the transverse beam size. As previously
discussed, the induced transverse momentum will result
in possible growth of projected beam emittance, shown in
Fig. 3(b), where both our semi-analytical calculation and
ELEGANT tracking reveal this trend, while the prediction
by analytical formulas [5] give a constant value over TDS
deflecting strength. Because of the presence of the longi-
tudinal electric field in the TDS, particles in the beam may

induce an additional energy spread, depending on the de-
flecting strength of TDS. The growth of energy spread is
shown in Fig. 3(d), where our semi-analytical results are
consistent (but overestimated) with that by particle tracking
simulation. Again, the prediction by analytical formulas [5]
gives a constant value over TDS deflecting strength. From
the comparisons, we find that some beam characteristics,
σz , is consistent among the three approaches; in the mean-
while other characteristics may be given with different results
based on different methods. More detailed studies, includ-
ing the underlying assumptions for different models between
particle tracking and semi-analytical calculation, will be
necessary to investigate the beam dynamics in the TDS.

Figure 3: Dependence on the magnetic deflecting field for
(a) beam size and; (b) beam emittance; (c) bunch length; (d)
the relative energy spread, at the exit of the TDS. The black
lines are obtained from our semi-analytical model, the blue
lines from the analytical formulas by van Rens et al. [5], and
the red dots from particle tracking simulation ELEGANT.

SUMMARY
In this paper we have constructed 6 × 6 s-dependent

transport matrices for two practical transport elements, the
solenoid with fringe fields and the TDS. In constructing the
solenoid transport matrix, the fringe fields at the entrance
and exit are taken into account. The results from our semi-
analytical model are compared with ASTRA and a good
agreement is shown. In constructing the TDS transport ma-
trix, we track a few representative particles, find the inverse
Z matrix, and extract the transport matrix elements as a
function of s. We have then compared the numerical results
with the analytical formulas by van Rens et al. [5] at the TDS
exit. We also compared our results with particle tracking
simulation by ELEGANT and obtained a reasonable agree-
ment. We comment that the developed TDS model does not
take the edge fields into account, i.e., the hard edge model.
We put emphasis on the developed semi-analytical models
that they can be incorporated to our recent work [1] and will
further enrich our tool for beam moment calculation.
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