
A C++ TPSA/DA LIBRARY WITH PYTHON WRAPPER*
H. Zhang#, Y. Zhang

Jefferson Lab, Newport News, VA 23606, USA

Abstract
Truncated power series algebra (TPSA) or differential

algebra (DA) is often used by accelerator physicists to
generate a transfer map of a dynamic system. The map
then can be used in dynamic analysis of the system or in
particle tracking study. TPSA/DA can also be used in
some fast algorithms, e.g. the fast multipole method, for
collective effect simulation. This paper reports a new
TPSA/DA library written in C++. This library is
developed based on Dr. Lingyun Yang's TPSA code,
which has been used in MAD-X and PTC. Compared
with the original code, the updated version has the
following changes: (1) The memory management has
been revised to improve the efficiency; (2) A new data
type of DA vector is defined and supported by most
frequently used operators; (3) Support of inverse
trigonometric functions and hyperbolic functions for the
DA vector has been added; (4) the composition function is
revised for better efficiency; (5) a python wrapper is
provided. This library is open-source and the code is
published on its github repository.

INTRODUCTION
The truncated power series algebra (TPSA) [1] or

differential algebra (DA) [2] is a widely used tool in
accelerator physics study. It is often used to generate a
transfer map for a section of an accelerator. Once the map
is created, it can be used directly to analyse the dynamic
property of the section or perform map-based tracking for
it. TPSA/DA has also been introduced into the fast
multipole method (FMM) [3], which is a fast algorithm to
calculate pairwise interactions between particles. The
TPSA/DA method has been implemented in many
accelerator simulation programs, such as MAD-X [4],
COSY Infinity [5], etc. However, a library outside the
simulation programs is not easily available for
developers. The purpose of this work is to provide a
stand-alone library with good efficiency for C++ and
Python code developers.

THE NEW LIBRARY
The new library is composed of a C++ library that

performs the TPSA/DA calculations and a Python
wrapper. The C++ code is developed based on Dr.
Lingjun Yang’s TPSA code [6], which was included in
previous versions of MAD-X. Now, our code, Yang’s
code, and documentations of our code are all available on
our github repository[7]. Following the documentation,

the users can compile the source code into a static or a
shared library. They can also download the source files
and use them directly in their projects. In our
development, we tried to make minimal changes on the
orignal code, but we had to revise or rewrite some
functions for better efficiency or consistency.

We added some new features, which are listed as
follows. 1. More math functions are supported. 2. Add a
DA vector data type and defined the popular math
operators for it, so that users can use a DA vector as
simple as a normal number in calculations. 3. Revised the
function for composition of two DA vectors for better
performance. 4. Provide bunch processing of the
composition function, since in accelerator studies one
usually has to deal with multiple dimensional problems
and the composition needs to be carried out on multiple
DA vectors. These features will be demonstrated in the
flowing sections.

Besides the new features added, one big change is made
on the memory management (see Fig. 1). In Yang’s code,
the pointers to all the DA vectors are stored in a vector.
Although the maximum number of DA vectors in the run
is defined, the memory is not allocated. Each time when a
new DA vector is needed, the program will search in the
vector to find the first empty pointer and allocate the
memory to it. Once the DA vector is out of scope, the
memory is freed. This approach is good enough for a
normal usage in accelerator study, which usually only
needs a light DA calculation. However, in some cases an
intense DA calculation may be needed. For example,
when DA is used in FMM, to perform the calculation
once, there may be millions of DA vectors created and

Figure 1: A schematic of memory management.

* Work supported by the Department of Energy, Laboratory Directed
Research and Development Funding, under Contract No. DE-AC05-
06OR23177.
#hezhang@jlab.org

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-WEPLS14

WEPLS14
796

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

05: Beam Dynamics and EM Fields

millions of DA operations carried out. In such a case, the
search for address and the allocation/deallocation of
memory for each DA vector will be a big burden. To solve
this problem, we use a linked-list to manage the memory.
The memory pool for all the DA vectors are allocated
when the DA environment is initialized. The address for
the slots, each for one DA vector, in the pool are saved in
a linked-list. Whenever we need to create a new DA
vector, we take out a slot from the beginning of the list.
Whenever a DA vector goes out of the scope, its
destructor will set all value in the slot to zero and put it
back to the end of the list. The memory pool is managed
simply by manipulating the two pointers that points to the
beginning and the end of the list. In such a way, the
repetitive searching and allocation/deallocation operations
are avoided and a better efficiency can be achieved.

A python wrapper has also been developed based on
pybind11 [8] for python 3. The source code and the
documentation are available on its github repository [9].
Once compiled, a shared library will be generated, which
can be imported into the python environment. It provides
an access to the C++ library through python and supports
almost all the functions in the C++ library. The
calculations and memory management are still carried out
by the C++ library.

VERIFICATION AND BENCHMARK
This library has been verified with COSY Infinity 9.0.

As an example, the outputs of calculating
asin(0.3+da[0]+2 da[1]), where da[0] and the da[1] are
the first and the second DA base, up to the fourth order by
both programs are presented in Fig. 2 and Fig. 3
respectively. Figure 2 shows the result by COSY Infinity,
while figure 3 shows the result by our library called from
python 3. The two programs give out exactly the same
result. Here we want to note that for some functions, e.g.
asin(), one may observe difference in the results at orders
of 10-15 or 10-16, which is due to the different algorithms
used in the calculation and is considered acceptable in
practice.

We also compared our lib with Yang’s original lib to

Figure 2: COSY Infinity 9.0 Output.

Figure 3: Output by the new TPSA library.

see how much we gain in efficiency. The test runs
presented here were carried out in a Windows 10 desktop
with Xeon E5-1620 processor running at 3.60 GHz. Since
in accelerator physics it is quite often to deal with a 3D
dynamic system with six variables of positions and
momentum, we first test substituting six DA vectors into
one DA vector with six bases. Table 1 shows the
computation cost by our lib and Yang’s lib for orders of 2
to 10. With a moderate order 4 or 6, our lib is about 20
times faster. At order 10, the time cost of our lib is still
only 1/3 of the original code. The second test we made is
the bunch-processing composition of six DA vectors with
another six DA vectors, which is a mimic of generating
the transfer map of a 3D dynamic system with the maps
of its two composites. Yang’s code does not have the
bunch processing feature, so we have to repeat the
computation in the first test six times. We simply multiply
six to the column in Table 1 to estimate of the time cost.

Table 1: Time (in seconds) for DA Vector Composition
Order # of terms This lib Yang’s lib

2 28 7.57 10 6.25 10
4 210 7.50 10 1.44 10
6 924 4.48 10 8.39 10
8 3003 0.99 2.55

10 8008 15.49 44.60

Table 2: Time (in seconds) for Bunch Processing of DA
Vector Composition

Order # of terms This lib Yang’s lib

2 28 1.51 10 3.75 10
4 210 1.04 10 8.64 10
6 924 4.42 10 5.03 10
8 3003 1.05 15.3

10 8008 16.04 267.6

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-WEPLS14

05: Beam Dynamics and EM Fields
WEPLS14

797

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

The time cost of our lib is listed in Table 2. It is good to
see for orders above six, the time cost only increases
slightly when compared with that in the first test. It means
the bunch processing does save a lot of time when we
need to repeat the composition, which helps to improve
the efficiency.

EXAMPLES
The sample codes in figure 4 and figure 5 show how to

use the library in C++ and Python 3. More examples are
available in the github repositories [7,9].

Figure 4: C++ sample code.

SUMMARY
A stand-alone library for TPSA/DA calculation has

been developed and released. The library is based on
Yang’s TPSA code and has been improved for the
following perspectives: 1. support for more mathematic
functions, 2. more convenient usage in C++ and Python 3,
and 3. better efficiency. The library has been verified
with COSY Infinity 9.0. Benchmarking with the original
code has shown significant improvement of efficiency for
composition of DA vectors. Source code, documentation,

and examples are available online [7,9].

 Figure 5: Python sample code.

ACKNOWLEDGEMENT
The authors would like to thank Dr. Lingyun Yang for

providing his source code.
This material is based upon work supported by the U.S.

Department of Energy, Office of Science, Office of
Nuclear Physics under contract DE-AC05-06OR23177.

REFERENCES
[1] A. Chao, “Lecture Notes on Topics in Accelerator Physics”,

SLAC-PUB-9574, (2002).
[2] M. Berz, “Modern Map Methods in Particle Beam Physics”,

Academic Press, (1999)
[3] H. Zhang, M. Berz, “The Fast Multipole Method in the

Differential Algebra Framework”, Nuclear Instruments &
Methods in Physics Research, A, pp. 338-344 (2011)

[4] F. Schmidt and H. Grote, “MAD-X -- An Upgrade from
MAD8”, in Proc. PAC'03, Portland, OR, USA, May 2003,
paper FPAG014, pp. 3497-3499.

[5] K. Makino, M. Berz, “COSY Infinity Version 9”, Nuclear
Instruments & Methods in Physics Research, A, pp. 346-
350, (2006). doi:10.1016/j.nima.2005.11.109

[6] L. Yang, “Array Based Truncated Power Series Package”, in
Proc. ICAP'09, San Francisco, CA, USA, Aug.-Sep. 2009,
paper THPSC059, pp. 371-373.

[7] https://github.com/zhanghe9704/tpsa
[8] https://github.com/pybind/pybind11
[9] https://github.com/zhanghe9704/tpsa-python

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-WEPLS14

WEPLS14
798

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

05: Beam Dynamics and EM Fields

