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Abstract
Machine learning and in particular neural networks, have

been around for a very long time. In recent years, thanks to
growth in computing power, neural networks have reshaped
many fields of research, including self driving cars, comput-
ers playing complex video games, image identification, and
even particle accelerators. In this tutorial, I will first present
an introduction to machine learning for beginners and will
also touch on a few aspects of adaptive control theory. I will
then introduce some problems in particle accelerators and
present how they have been approached utilizing machine
learning techniques as well as adaptive machine learning
approaches, for automatically tuning extremely short and
high intensity electron bunches in free electron lasers.

Introduction
Precise control of bunch lengths, current profiles, and en-

ergy spreads of increasingly shorter electron beams at fem-
tosecond resolution is extremely important for all advanced
particle accelerators, including free electron lasers (FEL).
FEL X-ray bursts with tunable wavelength are generated by
tuning the energies of extremely short electron bunches (∼fs).
Two of the most advanced FELs are the Linac Coherent Light
Source (LCLS) and the European XFEL (EuXFEL). The
LCLS provides users with photon energies of 0.27 keV to
12 keV based on electron bunches with energies of 2.5 GeV
to 17 GeV with electron bunch charges ranging from 20 pC
to 300 pC and the bunch duration from 3 fs to 500 fs [1–3].
The EuXFEL, utilizes electron bunches with energies of up
to 17.5 GeV, with charges ranging from 0.02 to 1 nC per
bunch, and photon energies of 0.26 keV up to 25 keV [4].
Both the LCLS and the EuXFEL face challenges in quickly
tuning between different beam types and achieving precise
control for desired current and energy profiles and complex
experiments such as two color mode and self seeding [5–8].

Machine Learning
Recently, powerful machine learning (ML) techniques

have been studied for various particle accelerator applica-
tions. ML-based tools, such as neural networks (NN), can
be trained to automatically tune and control large complex
systems such as particle accelerators [9–12]. In a prelimi-
nary simulation study for a compact THz FEL, a NN control
policy was trained to provide suggested machine settings to
switch between desired electron beam energies while pre-
serving the match into the undulator and a fast surrogate
model was also trained from PARMELA simulation results
in order to facilitate the training of the control policy [13].
∗ Work supported by Los Alamos National Laboratory
† ascheink@lanl.gov

For mapping inputs to outputs of an analytically unknown,
but sampled system, a standard linear regression approach
assumes a noise corrupted linear model of the form

f (x) = xTw, y = f (x) + ϵ, ϵ ∼ N
(
0, σ2

n

)
, (1)

where ϵ is a identically distributed Gaussian distribution with
zero mean and variance σ2

n . The goal here is to determine
an approximation of the weights, w, in order to learn the
mapping x → y. Given a collection of measurements, M =
(X,y), where the matrix X has rows given by m sets of input
parameters xi = (xi1, . . . , xin), i ∈ [1,m], and the vector y =
(y1, . . . , ym) is a collection of outputs, a Bayesian approach
gives the following approximation for the weights w, based
on the assumption that they are mean 0 with covariance
matrix Σ:

ŵ = σ−2
n

(
σ−2
n X XT + Σ−1

)−1
Xy. (2)

This approach works extremely well and is the least squares-
based optimal solution for (1) given a set of measurements X ,
but fails once nonlinearities are introduced in the mapping
f (x). The most straight forward way to extend this approach
to nonlinear systems is to choose a set of functions, such as
polynomials, project an input x into a higher dimensional
space, of the form g(x) = (1, x, x2, . . . ), and then perform
a similar approach as above on an assumed model of the
form f (x) = g(x)Tw. Another approach is to work directly
in function space, utilizing Gaussian processes, which are
collections of random variables with joint Gaussian distri-
butions, with mean m(x) = E[ f (x)] and covariance

k(x,x′) = E [( f (x) − m(x))( f (x′) − m(x ′))] . (3)

The choice of covariance function determines the shapes of
response functions and their smoothness. A typical choice
for a smooth covariance function is given by an exponential:

k(x,x′) = exp
(
− |x − x′ |

2
/2
)
, (4)

which corresponds to a Bayesian linear regression model
with an infinite number of basis functions. A thorough
overview of Gaussian processes is available in [14].

Neural networks are another class of extremely powerful
ML tools for learning input-output relationships for complex,
many parameter systems. In particular, convolutional neural
networks (CNN) are very useful for images, for example
to map 2D LPS measurements to accelerator component
values, because they take into account spacial relationships.
Mathematically, a convolutional layer can be written as

hl
(i, j),c =

s∑
m=−s

s∑
n=−s

∑
c′

w(m,n),c,c′hl−1
(i−m, j−n),c + bc,c′ (5)
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Figure 1: Schematic of the FACET-II and LCLS accelerators and examples of LPS virtual diagnostics compared to LCLS
measurements and FACET-II particle tracking simulations. Figure from [16].
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Figure 2: As the accelerator setup was varied, the adaptive scheme continuously adjusted the model to track the measured
energy spread spectrum (A) with the simulated energy spread spectrum (B) and thereby was able to predict the measured
longitudinal phase space of the beam (C) with simulated XTCAV measurements (D). Images from [25].

which is followed by ab activation function such as

ReLU
(
hl
(i, j),c

)
= max

{
0, hl

(i, j),c

}
, (6)

where hl
(i, j),c

is the feature map intensity at (i, j) pixel coor-
dinates, s is the stride, c is the channel index in layer l. All
intensities outside the region of the feature map are set to 0.
The w(m,n),c′,c are the convolutional kernel weights between
channel c and channel c′ of neighboring layers and bc,c′ is
a bias term. Powerful CNNs are deep and have very wide
layers, resulting in very large numbers of weights and biases
that must be tuned by some sort of gradient descent method
based on very large collections of training data.

Transverse deflecting cavities provide some of the most
important diagnostics that exist, measuring a beam’s LPS
[15]. Recently, a novel ML approach has been developed to
train neural networks to predict a beam’s LPS based on ac-
celerator settings [16], as shown in Fig. 1. A novel Bayesian
optimization framework that uses sparse online Gaussian
processes has been applied for quadrupole magnet tuning in
an FEL [17]. Bayesian optimization methods have also been
developed for maximizing FEL pulse energy [18]. Various
ML tools, including clustering for identifying faulty beam
position monitors (BPM) using outlier detection and ML
methods for optics corrections has been developed and per-
formed at CERN [19, 20]. For more examples and details
the reader is referred to [11, 12] and the references within.
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Figure 3: ES scheme applied at the EuXFEL more than
doubling average pulse energy over ∼4 minutes.
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Figure 4: Tuning 105 parameters to maximize average bunch
energy based on raw function measurements. The 75 point
moving average is plotted to help visualize energy evolution.

Extremum Seeking
The tuning algorithm that we utilized is based on a model-

independent adaptive extremum seeking (ES) feedback ap-
proach developed for the stabilization of unknown, nonlinear,
unstable dynamic systems. The main strengths of the method
are that it works based on noisy measurements, can handle
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Figure 5: Adaptive ML setup for lLPS tuning at LCLS.

nonlinear, time-varying systems, and can tune many param-
eters simultaneously. Analytic proofs of convergence for a
wide range of systems can be found in the literature [21–25].

For iterative accelerator tuning applications, we consider
some analytically unknown cost function that we would like
to minimize or maximize base only on noisy measurements,
C(p, t). For this work, C(p, t) is the pulse energy of the light
generated by an FEL and we would like to automatically
maximize this cost function. This cost is a function of accel-
erator parameters p = (p1, . . . , pm), such as magnet power
supply settings which control magnetic field strengths or
RF system phase and amplitude settings, which control the
acceleration of the charged particle beams. Furthermore, all
of these components, the beam itself, and the diagnostics
drift with time due to external influences such as temperature
variation, and therefore there is a time dependence. Also,
we are usually only able to sample a noise-corrupted version
of such a cost, of the form Ĉ(p, t) = C(p, t)+ n(t). Although
the interaction of charged particles with external sources of
electromagnetic fields, including RF cavities, magnets, and
other particles in the bunch, is analytically described via
Maxwell’s equations and special relativity, when consider-
ing a realistic electron bunch and its travel down the length
of a particle accelerator, there is no analytic formula relating
all component settings to the light pulse energy.

Tuning of parameters p is based on the dynamics:

dpi
dt
=
√
αωi cos

(
ωit + kĈ(p, t)

)
, (7)

where all of the frequencies are distinct, ωi = ωri , ωrj =
ωj , a good way to choose the dithering frequencies ωj is
to evenly space them in the range [ω,1.75ω], for large ω,
so that no two dithering frequencies are integer multiples
of each other. α is related to the dithering amplitude of
each parameter, upon reaching equilibrium, each parameter
oscillates with an amplitude of

√
α/ωj about a steady state

value, and k is a gain. Based on [21–25], one can prove that
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Figure 6: a: Longitudinal phase space of initial accelerator setup and target phase space (arbitrary color scales). b: The
parameters started very far away from their optimal values, feedback alone did not converge within 150 steps, likely stuck in
a local minimum. c: Utilizing the trained NN to give a closer initial guess, the feedback algorithm was able to converge to
the desired phase space within 150 steps. d: Final phase space distributions. e: Cost function evolution for both case. [27]

on average, for large ωi , the dynamics of (7) are

dpi
dt
= −

kα
2
∂C(p, t)
∂pi

, (8)

a gradient descent of the analytically unknown function C,
despite only seeing its noisy measurement Ĉ.

For digital iterative parameter updates, a finite difference
approximation of the derivative in (7) is utilized:

pi(n + 1) = pi(n) + ∆t
√
αωi cos

(
ωin∆t + kĈ(n)

)
, (9)

where ∆t is chosen such that ∆t < 2π
5 maxωi

≪ 1, so that the
finite difference approximation of the derivative holds.

The physical parameter update period, Tw , and the digital
algorithm’s numerical time step, ∆t , are two completely
independent quantities. In the digital algorithm, ∆t is chosen
to be arbitrarily small, based on dithering frequency choices,
as described above. The update time, Tw , is the physical
time between parameter updates and is chosen based on how
fast accelerator parameters can be adjusted.

The iterative scheme is applied as follows: 1). Initial pa-
rameter settings, p(1), are set. 2). A wait time Tw is allowed
to pass for accelerator components to settle to their set points,
p(1). This may be ∼1 second for slow mechanical systems
such as phase shifters and ∼0.1 seconds for digital RF ampli-
tude or phase set-points, then record the cost function, Ĉ(1).

3). Calculate new parameter settings, p(2), based on p(1)
and C(1), according to (9) and continue iteratively.

The ES scheme has been applied at FACET to create a
non-invasive longitudinal phase space diagnostic, by adap-
tively tuning a model to match a non-destructive energy
spread spectrum. Once this match was accomplished, the
model’s accurately predicted and tracked the longitudinal
phase space (LPS) of the electron beam, as shown in Fig.
2 [25]. Further work in this direction is ongoing for even
more accurate LPS predictions at FACET-II. We utilized
the ES scheme for automatically maximizing the average
pulse energy of both the LCLS and the EuXFEL FELs [26].
Figure 3 shows the technique being applied at the EuXFEL
more than doubling average pulse energy over ∼4 minutes
and Fig. 4 shows the results of applying the same technique
at the EuXFEL with 105 parameters (84 air coils and 21
phase shifters) and a noisy cost function without averaging.
This was during initial machine setup in which various parts
are incrementally tuned to establish SASE.

Adaptive Machine Learning
Whereas a model-independent method, such as ES, can

handle time-varying systems, it is a local approach and can
possibly get stuck in local minima. Trained NNs can tune
globally, but only for the data sets they were trained on, and
therefore cannot handle time-varying systems. Therefore,
we created an adaptive ML framework in which a trained
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NN takes a first global guess and then adaptive feedback is
turned on and zooms in on and track time-varying optimal
parameters, as shown in Fig. 5. The approach was to train
an NN based on a parameter scan, where for each parameter
setting of the LCLS, we recorded a TCAV image of the LPS,
to learn how to map phase spaces to parameters [27]. In Fig.
6 we demonstrate the ability of the adaptive machine learning
approach. To achieve a desired phase space, a first guess for
machine parameters via a train NN takes place (a), ES is then
applied ES based on real time TCAV measurements where
the cost is the difference between the desired and current 2D
phase space images (b), resulting in convergence (c).

Conclusions
Advanced adaptive feedback, machine learning, and adap-

tive machine learning tools are being developed for auto-
matic accelerator tuning, optimization, and for the develop-
ment of non-invasive diagnostics based on combinations of
real-time measurements and fast online models.
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