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Abstract

One of the DOE-HEP Grand Challenges identified by Na-
gaitsev et al. relates to the use of virtual particle accelerators
for beam prediction and optimization. Useful virtual acceler-
ators rely on efficient and effective methodologies grounded
in theory, simulation, and experiment. This paper uses an al-
gorithm called Sparse Identification of Nonlinear Dynamical
systems (SINDy), which has not previously been applied to
beam physics. We believe the SINDy methodology promises
to simplify the optimization of accelerator design and com-
missioning, particularly where space charge is important.
We show how SINDy can be used to discover and identify
the underlying differential equation system governing the
beam moment evolution. We compare discovered differen-
tial equations to theoretical predictions and results from the
PIC code WARP modeling. We then integrate the discovered
differential system forward in time and compare the results
to data analyzed in prior work using a Machine Learning
paradigm called Reservoir Computing. Finally, we propose
extending our methodology, SINDy for Virtual Accelerators
(SINDyVA), to the broader community’s computational and
real experiments.

MOTIVATION

Nagaitsev et al. [1] have enumerated four Grand Chal-
lenges enabling future Department of Energy (DOE) High
Energy Physics (HEP) programs. Grand Challenge #4 Beam
Prediction poses the question: "How do we develop predic-
tive ‘virtual particle accelerators’"? We begin to address as
aspect of this Grand Challenge in this paper. Our aim is to
speed up commissioning and design studies of accelerators
by uncovering underlying physics in virtual and real acceler-
ators. Our approach is to apply an existing method from the
data-driven, nonlinear dynamics community called Sparse
Identification of Nonlinear Dynamics (SINDy) [2, 3] to un-
cover physics in problems that can’t be solved analytically.

This method is both Predictive and Productive. The
method is predictive in the context of providing an end result
model that can be used to predict beam dynamics beyond
the training dataset; the method is productive such that it
produce actionable results. It is slightly different than the
similar adjoint method as used by our collaborators at the
University of Maryland (UMD) [4]. That method can be
used to accelerate the design and optimization of lattices,
whereas this method is more readily applicable to predicting
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long-term behavior of underlying beam dynamics which can
be used to intensify accelerator commissioning.

APPROACH

Our approach is to prescribe a mathematical model
based upon the physics of an accelerator lattice. SINDy
works by assuming one can model the evolution of some
n-dimensional state vector x € R" as a system of ordinary
differential equations

d
th = f(x).
The variable ¢ is the independent variable, x is the
n-dimensional state vector of observe able either from a
simulation or experiment, and f(x) is the n-dimensional
equation governing how x evolves.

After one obtains the number n of state variables, one
can then take measurements of x at m equidistant times

ey

tj € {t1,t2,...,t;y} with j being and index into a matrix X:
x'(11) x1 (1) Xn (1)
X=| : |=| : :
XT(tm) x1(tm) X (tm)

One then differentiates the matrix dX/dt = X which is then
used in the discovery stage of SINDy. One proposes a can-
didate ®(X) which consists of a number of intuited/desired

basis functions for the underlying dynamics. The matrix .

X is equated to ©(X) times a sparse coefficient matrix
== [go E...€p F] which is solved for the given appropri-
ate optimization technique.

x'(n) x1(t1) Xn(t1)

XT(tm) xl(tm) xn(tm)
Our intuited dynamics consist of simple harmonic motion
(SHM), Fig. 1(b), a Fourier series based on a Fourier trans-
form of the lattice, Figs. 2(a) and 2(b), and a nonlinear inter-
action (NL) motivated by the power law observed in Fig. 2(b)

and the oscillating amplitudes of the lowest order wavenum-
bers in the x.(z) spectrogram in Fig. 3:
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Our proposed candidate library takes the following form
X) = [1,X,cos(k;z),sin(k;z), Xcos(k;z), Xsin(k;z)].
learned sparse  coefficient = matrix is
=[é0.61,6 0,6 E e €,s]  which  has  dimensions
fnXngp.

The example problem we are applying SINDy to is an-
alyzing the transverse centroid X, = (x¢ = (x), ye = (y))
dynamics Fig. 1(b) of a electron beam from a WARP [5]
simulation of the University of Maryland Electron Ring
(UMER) Fig. 1(a) over one turn. Turns 2 and 3 were used
for prediction.
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Figure 1: (a) Graphic showing the UMER lattice. (b) Beam
centroid measurements with respect to pipe center as a func-
tion of z for one turn.
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Figure 2: FOMs for SINDy to reproduce. (a) Autocorrela-
tion of the centroid data. (b) Fourier transform
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Figure 3: x.(z) spectrogram. Note the periodic amplitudes
of the lowest order modes with blue, low amplitude and red,
high amplitude.

Examining the Centroid Data

Our choice of basis functions is predicated upon both the
physics of the lattice and the dynamics present within the
data. We motivate the form of Eq. (2) with SHM, Fourier,
and NL terms in this section.

SHM motion is readily observable from a phase space
plot Fig. 4(a), while an examination of the Fourier transform
of the data and a spectrogram, Figs. 2(b) and 3, both moti-
vate the inclusion of Fourier modes and the NL terms. The
physics and dynamics captured with these terms is readily
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Figure 4: (a) Stroboscopic plot of the beam centroid Fig. 1(b)
over one turn. (b) Phase space plot of x = [z, xc, y.]”.

interperateable, however there may also be other physics
present within the data that has not been included with just
these basis functions.

Since SINDy works by assuming the dynamics present
within the data may be modeled as a ODE, we must ensure
that the input data models an ODE. Figure 4(a) is a self-
intersecting line which means that every point in phase space
is not unique which is a requirement for a well behaved ODE.
To ensure uniqueness in phase space, we use the independent
variable z to unwind the 2D phase space.!

In addition to motivating basis functions we have chosen
the autocorrelation Fig. 2(a) of the centroid data with itself
and the Fourier transform Fig. 2(b) of the data as Figures
of Merit (FOM) for the data. FOMs are metrics which we
seek to reproduce as exactly as possible, and give indication
as to whether the proposed dynamics match the underlying
physics. Table 1 details the three lowest order lattice modes
of the data which are injected into our @(X) .

Table 1: Three lowest order Fourier modes of x.(k,/2m)
from Fig. 1(b). The parenthetical superscript refers to the
index i.

(i) .
i % am) LY @)

1 0.61 10.34
2 252 2.50
3 3.62 1.68

The final addition to our proposed basis function is based
on a spectrogram of the data Fig. 3. The periodic amplitude
of the lowest order modes may be replicated with a NL
interaction between the oscillatory centroid data and the
lattice Fourier modes.

RESULTS

The results using the SINDy algorithm are described in
this section. Three distinct tries were detailed in our pre-
sentation. Only the last and best try is detailed here for
brevity.

! Using the paraxial approximation, we transform the independent variable
fromt — z.
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Try 3: Fourier + SHM + NL

Our highest fidelity try on learning the dynamics in the
data included all of the terms in Eq. (2): Fourier, SHM,
and NL interaction. The dynamics are captured almost ex-
actly between the WARP simulation and the SINDy model
Figs. 5(a) and 5(b). The FOMs are also captured very well
Figs. 5(c) and 5(d). The WARP simulation dataset and the
SINDy model result are compared directly in phase space
and show excellent agreement Fig. 6.
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Figure 5: (a) SINDy axial solution comparison. (b) Phase
space. (c¢) Autocorrelation Comparison. (d) Fourier trans-
form of SINDy model.
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Figure 6: Comparison of the WARP simulatoin x =
[z,x¢(2), ye(2)] and the trained SINDy model using Eq. (2).

Comparison to Machine Learning

The SINDy method for capturing beam centroid dynamics
may be compared to the machine learning method reservoir
computing as performed by our colleagues Komkov et al. [6].
Figures 7(a) and 7(b) show the training (green) and predic-
tion results (red) of the third try SINDy model integrated
forward in the lattice over turns 2 and 3 and compared to the
actual data. The vertical black lines mark turns in meters:
z1 = 11.52, and z5 = 23.04. The predicted error quickly
goes beyond the order of the data in Fig. 7(a). However,
if we use a slightly different set of basis functions for the
Fourier terms we trade off error in the training for better
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Figure 7: Error fraction for SINDy training (green, turnl)
and prediction (red, turn2 and turn3) for the third try (a),
and a slightly modified third try (b).

results reproducing the “climate"” of the phase space dynam-
ics in turns 2 and 3. This goes to show that discovering
underlying nonlinear dynamics has room for improvement.

If we compare the data to machine learning results pro-
duced by Komkov et al. we note the prediction error is much
less than our method Fig. 8. This is a result of the higher di-
mensionality of the utilized reservoir computing method. A
drawback of reservoir computing, and all machine learning
methods, is a lack of interpretability in the resultant model.
One cannot point to a specific term/node in the architecture
and declare “this is the physics going on". An advantage of
the SINDy technique is the built in interpretability of the
underlying physics based model. If our SINDy results can
be improved we believe that the interpretability of the model
will enable a more predictive framework for virtual and real
accelerators.
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Figure 8: Machine Learning results from Komkov et al. [6]
over turns 2 and 3 in the lattice. (Left) x.(z) prediction.
(Right) y.(z) prediction.

CONCLUSION

We believe SINDy is a promising method that enables the
intensification of accelerator commissioning by uncovering
the underlying physics of beam dynamics. We have shown
both recoverable beam dynamics Fig. 6 and FOMs Figs. 5(c)
and 5(d). With this methodology we aim to develop a Pre-
dictive and Productive framework for beam dynamics with
high fidelity. We desire to apply SINDy in areas of interest
to the broader community.
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