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Abstract
Beam dynamics of charged particles in the fringe field of a

quadrupole and a dipole magnet is considered. An effective
method for solving symplectic Lie map exp(: 𝑓 :) in such
cases has been developed. A precise analytic solution for
nonlinear transverse beam dynamics in a quadrupole magnet
with hard-edge fringe field has been obtained. The method
of Lie map calculation considered here can be applied for
other magnets and for soft edge type of fringe field.

INTRODUCTION

Nonlinear beam dynamics due to the fringe field effect
of magnets can impact accelerator performance [1, 2]. In
this paper we calculated an exact analytic nonlinear transfer
map for beam dynamics in the fringe field of a quadrupole
magnet using the Lie transformation exp(: 𝑓 :) in hard-edge
approximation. In accelerator physics, transverse beam op-
tics of single particle is defined by 4D coordinates in a phase
space {𝑥, 𝑥𝑝 , 𝑦, 𝑦𝑝}. Here 𝑥𝑝 = 𝑝𝑥/𝑝𝑧 and 𝑦𝑝 = 𝑝𝑦/𝑝𝑧
are angular coordinates. Solving the Hamiltonian flow
with input coordinates {𝑥, 𝑥𝑝 , 𝑦, 𝑦𝑝}𝑖𝑛 gives a correspond-
ing function M called a transfer map with output coordinates
{𝑥, 𝑥𝑝 , 𝑦, 𝑦𝑝}𝑜𝑢𝑡 = M{𝑥, 𝑥𝑝 , 𝑦, 𝑦𝑝}𝑖𝑛.

The beam dynamics for real quadrupole magnets is nor-
mally calculated numerically and the transfer maps is hard
to solve precisely and analytically in the general case. For
this reason, the magnetic field of the quadrupole as well as
the beam dynamics is usually simplified by a so-called hard-
edge model. The real 3D magnetic field of a quadrupole
B(𝑥, 𝑦, 𝑧) can be defined by its gradient components 𝐺 (𝑧) =
𝜕𝐵𝑦/𝜕𝑥 = −𝜕𝐵𝑥/𝜕𝑦 on the z-axis. The hard-edge model
is represented by a rectangular profile with amplitude 𝐺 =

𝐺 (𝑧)𝑚𝑎𝑥 and longitudinal size 𝐿𝑒 𝑓 𝑓 =
∫
𝐺 (𝑧)𝑑𝑧/𝐺 [3].

Single particle dynamics is well approximated by the hard-
edge model consisting of a sequence of elements called
lattice: drift space followed by nonlinear thin element of
the entrance fringe field followed by thick linear element of
the quadrupole magnet [3] then followed by thin nonlinear
element of the exit fringe field. In this paper we consider
the nonlinear beam dynamics of the entrance and exit fringe
fields of the quadrupole and dipole. The nonlinear map in
first order approximation over B field gradient was originally
derived by Lee-Whiting [4] in 1970. Some derivations for
electrostatic and magnetic quadrupole lens can be found
in [5]. Linear map due to fringe field can be found in [6].
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The nonlinear transfer map can be obtained by calculating
Lie transformation widely used in accelerator physics [7, 8]:

exp(: 𝑓 :) =
∞∑︁
𝑛=0

: 𝑓 :𝑛

𝑛!
(1)

Here : 𝑓 :𝑛 is operator defined by recurrence equation:

: 𝑓 :𝑛= { 𝑓 , : 𝑓 :𝑛−1} (2)

with the initial condition : 𝑓 :0 𝑧𝑖 = 𝑧𝑖 . Here 𝑧𝑖 is one of the
phase space coordinate to be transformed by Eq. (1) and

{𝑎, 𝑏} = 𝜕𝑎

𝜕𝑥

𝜕𝑏

𝜕𝑥𝑝
− 𝜕𝑎

𝜕𝑥𝑝

𝜕𝑏

𝜕𝑥
+ 𝜕𝑎

𝜕𝑦

𝜕𝑏

𝜕𝑦𝑝
− 𝜕𝑎

𝜕𝑦𝑝

𝜕𝑏

𝜕𝑦
(3)

is the Poisson bracket operator expressed in terms of trans-
verse phase space coordinates. 𝑓 in expression Eq. (1) is
called characteristic function [7, 9]. We will derive a pre-
cise nonlinear map for the entrance/exit fringe fields of
quadrupole and dipole magnets by solving the Lie trans-
formation Eq. (1) exactly.

QUADRUPOLE MAGNET
We will use magnetic field and its corresponding char-

acteristic function 𝑓 in the form of multipole approxima-
tion [7, 9]:

𝑓 = Re𝐶 (𝑥+𝑖𝑦)𝑛
4(𝑛+1)

(
𝑥𝑝𝑥+𝑦𝑝𝑦+𝑖

𝑛+2
𝑛

(𝑥𝑝𝑦−𝑦𝑝𝑥)
)

(4)

This field is characterised by the lowest order harmonic 𝑛

in the transverse direction while any real field contains an
infinite number of harmonics according to Fourier theory.

In this section we solve precisely Lie transformation
Eq. (1) with characteristic function Eq. (4) for the fringe
field of quadrupole with 𝑛 = 2:

exp(: 𝑘 [𝑦𝑝 (𝑦3 + 3𝑥2𝑦) − 𝑥𝑝 (𝑥3 + 3𝑦2𝑥)] :) (5)

Here we denote the strength coefficient

𝑘 =
𝑒𝐺/𝑝0

12(1 + 𝛿𝑝0/𝑝0)
(6)

for simplicity, where 𝐺 is the amplitude of the gradient
of the magnetic field. Entrance and exit fringe fields are
characterised by± sign in front of 𝑘 coefficient while the sign
of the coefficient 𝑘 can be positive or negative independently.
Before we solve the full transformation Eq. (1) with four
phase-space terms of the characteristic function 𝑓 we will
first solve the Lie transform for only one term:

exp(: −𝑘𝑥𝑝𝑥3 :) (7)
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After applying Eq. (7) to 𝑥 we obtain the infinite series:

𝑒:−𝑘𝑥𝑝 𝑥3:𝑥 = 𝑥 + 𝑘𝑥3

1!
+ 3𝑘2𝑥5

2!
+ ... + 𝑎𝑛𝑘

𝑛𝑥2𝑛+1

𝑛!
+ ... (8)

The numerical coefficient 𝑎𝑛 in Eq. (8) can be calculated by
substituting 𝑎𝑛𝑘

𝑛𝑥2𝑛+1 into Eq. (2). After transformations
we obtain:

𝑎𝑛 = (2𝑛 − 1)𝑎𝑛−1 (9)

which can be solved with the initial condition 𝑎0 = 1:

𝑎𝑛 =
(2𝑛)!
2𝑛𝑛!

(10)

Using this, precise transfer map Eq. (8) for 𝑥 𝑓 ≡ 𝑥𝑜𝑢𝑡 after
infinite series summation equals:

𝑒:−𝑘𝑥𝑝 𝑥3:𝑥 =

∞∑︁
𝑛=0

(2𝑛)!
2𝑛 (𝑛!)2 𝑘

𝑛𝑥2𝑛+1 =
𝑥

√
1 − 2𝑘𝑥2

(11)

Similar calculation can be done for other canonical coor-
dinates {𝑥, 𝑥𝑝 , 𝑦, 𝑦𝑝}. The transfer map Eq. (8) is easily
solvable but it is much more complicated with increasing

number of terms of the characteristic function Eq. (5). In
this case it would be helpful to know or assume a general
algebraic form of solution to be found. After that, we can
calculate a solution in the given form by applying a simpli-
fying transformation 𝐹 [𝑧] to the map itself and using the
following rule:

𝐹 [exp(: 𝑓 :)𝑧] = exp(: 𝑓 :)𝐹 [𝑧] (12)

Considering problem Eq. (7) it would be convenient to re-
duce the square root from solution Eq. (11) and turn over the
whole fraction applying the total transformation 𝐹 [𝑧] = 𝑧−2.
Then we can solve it in a simple way without series calcula-
tion:

(𝑒:−𝑘𝑥𝑝 𝑥3:𝑥)−2 = 𝑒:−𝑘𝑥𝑝 𝑥3: (𝑥−2) = 1
𝑥2 − 2𝑘 (13)

Solution Eq. (13) must be transformed back (𝑧 𝑓 )−1/2 in or-
der to get the result of Eq. (11). The simplification Eq. (13)
works well for any number of terms in Eq. (5) and we will
present the full solution of Eq. (5) without detailed solving:

𝑥 𝑓 =

𝑥 + 𝑦 + (𝑥 − 𝑦)
√︁

cos 2𝜙 + 2𝑥𝑦
𝑥 + 𝑦

(
cos 2𝜙 +

√︁
𝑥2 + 𝑦2√︁

2𝑥𝑦
sin 2𝜙 − 1

)
√√

4
√︁

cos 2𝜙
(𝑥 + 𝑦)2

( (
𝑥2 + 𝑦2) cos 2𝜙 + 2𝑥𝑦

)
− 2 sin 2𝜙

𝑥 − 𝑦

𝑥 + 𝑦

(√︁
𝑥2 + 𝑦2√︁

2𝑥𝑦
−

√︁
2𝑥𝑦√︁

𝑥2 + 𝑦2
cos 2𝜙

)

𝑦 𝑓 =

𝑥 + 𝑦 − (𝑥 − 𝑦)
√︁

cos 2𝜙 + 2𝑥𝑦
𝑥 + 𝑦

(
cos 2𝜙 −

√︁
𝑥2 + 𝑦2√︁

2𝑥𝑦
sin 2𝜙 − 1

)
√√

4
√︁

cos 2𝜙
(𝑥 + 𝑦)2

( (
𝑥2 + 𝑦2) cos 2𝜙 + 2𝑥𝑦

)
− 2 sin 2𝜙

𝑥 − 𝑦

𝑥 + 𝑦

(√︁
𝑥2 + 𝑦2√︁

2𝑥𝑦
−

√︁
2𝑥𝑦√︁

𝑥2 + 𝑦2
cos 2𝜙

)

𝑥
𝑓
𝑝 =

(
𝑥𝑝

𝜕𝑦 𝑓

𝜕𝑦
− 𝑦𝑝

𝜕𝑦 𝑓

𝜕𝑥

)/ (
𝜕𝑦 𝑓

𝜕𝑦

𝜕𝑥 𝑓

𝜕𝑥
− 𝜕𝑥 𝑓

𝜕𝑦

𝜕𝑦 𝑓

𝜕𝑥

)
𝑦
𝑓
𝑝 =

(
𝑦𝑝

𝜕𝑥 𝑓

𝜕𝑥
− 𝑥𝑝

𝜕𝑥 𝑓

𝜕𝑦

)/ (
𝜕𝑦 𝑓

𝜕𝑦

𝜕𝑥 𝑓

𝜕𝑥
− 𝜕𝑥 𝑓

𝜕𝑦

𝜕𝑦 𝑓

𝜕𝑥

)
𝜙 = am

(
± 2𝑘

√︁
2𝑥𝑦

√︁
𝑥2 + 𝑦2

�� 2
)

(14)

Here the ± sign refers to the entrance/exit fringe field maps
and 𝜙 = am(𝑧 | 2) is the Jacobi Amplitude function defined
as the inverse of the elliptic integral:

𝑧 =

𝜙∫
0

𝑑𝑡√︁
1 − 2 sin2 𝑡

(15)

Function am(𝑧 | 2) has a series representation:

am(𝑧 | 2) = 𝑧 − 𝑧3

3
+ 𝑧5

10
− 3𝑧7

70
+ ... (16)

The canonical momenta 𝑥
𝑓
𝑝 and 𝑦

𝑓
𝑝 are presented through

derivative of functions 𝑥 𝑓 and 𝑦 𝑓 because they are too bulk
to present in explicit form. This representation follows from
symplecticic property of the Lie transformation Eq. (1). The
parameters 𝑥 𝑓

𝑝 , 𝑦
𝑓
𝑝 in Eq. (14) can be easily calculated and

represented through the 𝜙 = am(𝑧 | 2) parameter using a
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derivative transformation:
𝜕

𝜕𝑧
am(𝑧 | 2) = −

√︁
cos (2 am(𝑧 | 2)) = −

√︁
cos 2𝜙 (17)

Solution Eq. (14) can be verified by Taylor series expan-
sion in the 𝑘 coefficient and compared with Eq. (1) series.

DIPOLE MAGNET
Here we present a transfer map for the fringe field of a

dipole magnet in the hard edge approximation. After sub-
stituting 𝑛 = 1 into Eq. (4) the Lie transformation for the

fringe field has the following form:

exp(: 𝑘 [2𝑦𝑝𝑥𝑦 − 𝑥𝑝 (𝑥2 + 3𝑦2)] :) (18)

with coefficient
𝑘 =

𝑒𝐵0/𝑝0
8(1 + 𝛿𝑝0/𝑝0)

(19)

where 𝐵0 is the magnetic field amplitude of
the dipole magnet. Solution Eq. (18) for
a dipole magnet has the following form:

𝑥 𝑓 =

± 1
𝑘3

√︃
𝑘6𝑔3 − 𝑘6𝑦2 (

𝑥2 + 𝑦2)2 (
𝑔(𝑥2 + 3𝑦2) + 6𝑦2 (𝑥2 + 𝑦2)

)
+ 𝑥𝑔3 + 2𝑥𝑦2 (𝑥2 + 𝑦2) (3𝑔 + 𝑥2 + 𝑦2)(

𝑔 − 𝑥2 − 𝑦2) (
𝑔2 + 4𝑦2 (𝑔 + 𝑥2 + 𝑦2)

)
𝑦 𝑓 =

𝑦
(
𝑔 − 𝑥2 − 𝑦2)2

±2𝑥
𝑘3

√︃
𝑘6𝑔3 − 𝑘6𝑦2 (

𝑥2 + 𝑦2)2 + 𝑔2 + (𝑥2 + 𝑦2) (𝑔 − 2𝑦2)

𝑥
𝑓
𝑝 =

(
𝑥𝑝

𝜕𝑦 𝑓

𝜕𝑦
− 𝑦𝑝

𝜕𝑦 𝑓

𝜕𝑥

)/ (
𝜕𝑦 𝑓

𝜕𝑦

𝜕𝑥 𝑓

𝜕𝑥
− 𝜕𝑥 𝑓

𝜕𝑦

𝜕𝑦 𝑓

𝜕𝑥

)
𝑦
𝑓
𝑝 =

(
𝑦𝑝

𝜕𝑥 𝑓

𝜕𝑥
− 𝑥𝑝

𝜕𝑥 𝑓

𝜕𝑦

)/ (
𝜕𝑦 𝑓

𝜕𝑦

𝜕𝑥 𝑓

𝜕𝑥
− 𝜕𝑥 𝑓

𝜕𝑦

𝜕𝑦 𝑓

𝜕𝑥

)
𝑔 =

(
𝑦𝑥2 + 𝑦3)2/3

(
1 + 1 + cos 𝜙

1 − cos 𝜙
√

3
)
, 𝜙 = am

(
2 × 31/4𝑘

(
𝑦𝑥2 + 𝑦3)1/3

���� 2−
√

3
4

)

(20)

Here the ± sign refers to the entrance/exit fringe field
maps, 𝜙 = am(𝑧 | (2−

√
3)/4) is the Jacobi Amplitude func-

tion defined as the inverse of the elliptic integral:

𝑧 =

𝜙∫
0

𝑑𝑡√︃
1 − 2−

√
3

4 sin2 𝑡

(21)

Expressions for angular phase space coordinates 𝑥 𝑓
𝑝 , 𝑦

𝑓
𝑝

are written in the same way as in Eq. (14) for simplicity
and can be easily calculated using the transformation for the
Jacobi Amplitude derivative:

𝜕

𝜕𝑧
am

(
𝑧
�� 2−

√
3

4

)
=

1
2

√︃
2 +

√
3 + (2 −

√
3) cos2 𝜙 (22)

Solution Eq. (20) as well as Eq. (14) can be verified by
Taylor series expansion in the 𝑘 parameter and compared
with the Lie series expansion Eq. (1).
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