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Abstract

The Electron-Ion Collider (EIC) incorporates beam
crabbing to recover geometric luminosity loss from the
nonzero crossing angle at the interaction point (IP). It is
well-known that crab cavity imperfections can cause
growth of colliding beam emittances, thus degrading col-
lider performance. Here we report a particle tracking study
to quantify these effects. Presently the study is focused on
crab cavity RF phase noise. Simulations were carried out
using Bmad. Dependence of emittance growth on phase
noise level was obtained which could be used for develop-
ing crab cavity phase control specifications. We also
benchmarked these simulations with theory.

INTRODUCTION

Crab crossing provides a head-on beam-beam collision
for beams with a nonzero crossing angle. When a bunch
passes through a crab cavity, as in an RF deflector, the
phase is set so there is no kick on the longitudinal bunch
centroid; only the head and tail of a bunch receive
transverse kicks in opposite directions. Previous work [1]
has shown that some imperfections of RF crab cavities
could cause degradation of stored beams, leading to
collider performance reduction.

One relevant imperfection is crab cavity RF phase noise,
which can induce additional momentum kicks on passing
particles and cause colliding beam emittance growth in the
crabbing plane [2, 3]. Some key crabbing system para-
meters are the crab cavity synchronization and noise
tolerances. Constraints on these tolerances come from the
maximum acceptable emittance growth rate and maximum
acceptable luminosity reduction. Previous studies found
the transverse emittance growth is dominated by the crab
cavity phase noise [2, 3], so it is critical to evaluate and
quantify this growth to provide an important input to
design specifications of the crab cavity controls.

In this paper, we focused our investigations and studies
on the emittance growth due to the RF phase noise in crab
cavities. In the first section, the simplified formulas are
applied to estimate the value of emittance growth rate for a
bunch passed through the crab cavities. The second section
addresses what we observed in the numerical calculations
and demonstrates the benchmarking work.
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ANALYTIC THEORY AND PREDICTIONS

P. Baudrenghien and T. Mastoridis developed a theoreti-
cal model for the growth of beam transverse emittance in-
duced by crab cavity noises [2, 3]. They argued the growth
is dominated by phase noises, which can be written as,
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where 3. is the horizontal § function at the crab cavity lo-
cation, V; is the crab cavity voltage amplitude, f_ is the
beam circulation frequency, Ej, is the beam energy, p(v)
is the betatron tune distribution, Sp¢ is the phase noise
power spectral density (PSD), and v}, is the horizontal be-
tatron tune. oy is the rms longitudinal bunch line density

(in radians at the crab cavity frequency) and Cy¢ (a¢) isa

function describing the growth rate dependence on the
bunch length:

Cap(0p) = € [Io(03) + 2321 1, (0D)] . (2)

I, (x) is the modified Bessel function of the first kind. As
the bunch length increases, the effect of phase noise on
transverse emittance growth is reduced.

To simplify evaluation, we assumed that the betatron
tune spread o, is sufficiently narrow, since the power
spectral density (PSD) is even symmetric, the effect of
noise is independent of the actual tune distribution, then the
following analytic formula was used for evaluating the
emittance growth rate in our numerical predictions,

dey
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For general practice, the filtered noise centered around
the betatron frequency is also used on PSD. In our calcula-
tion, suppose that Ergodic theory works here for the intro-
duced phase noise, considering a stationary Gaussian ran-
dom process with zero mean, a white Gaussian noise was
included in crab cavities, and Spy is simply as

2
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here 4 is the phase noise, it needs to be controlled in or-
der to avoid degradation of the beam emittance, particu-
larly of the cooled ion beam, then the tolerance of crab RF
phase noise for a ring can be evaluated as,
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Then the numerical prediction for each turn is:
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SIMULATION RESULTS

Simulations will provide tracking methodology and
benchmarking with the analytical model. Because EIC ion
collider ring design has not been completed yet, simula-
tions up to this point were carried out for the ion collider
ring based on an earlier version of Jefferson Lab Electron-
Ion Collider (JLEIC) [4, 5] which features a crossing angle
of 50 mrad leading to a Piwinski angle of 16.5 rad. Table 1
lists some JLEIC parameters those had been used in our
simulations. Without compensation of the crossing angle at
the physics program requirements, the well-developed
software, Bmad, had been implemented for tracking parti-
cles, investigating the dynamic stability of the lattice and
calculating all emittance in our simulations.

Table 1: JLEIC Parameters in Simulations

Beam Proton
Beam Energy (GeV) 100.0
Beam Circulation Frequency (MHz) 0.139
RF Cavity Frequency (MHz) 950.9
RF Cavity Voltage MV) 42.6
Crab Cavities Frequency (MHz) 950.9
Crab Cavities Voltage MV) 20.8
Normalized Emittance ¥ (um rad) 0.35
Normalized Emittance (um rad) 0.07
Borizonta at Crab Cavitiy B, (m) 450.0
RMS Bunch Length o, (cm) 1.0

For a particle with offset of centroid phase position
(Ax, Az, A(dp/p)) = (0. 38mm, 0.44mm, 0.0001), in two
cases, we tracked a particle movement in the simulations:
one simulation had crab cavities in the lattice, the other
didn’t. Figure 1 demonstrated the status of dynamic stabil-
ity of the lattice design. As parts of our studies, we also
investigated the fractional parts of frequency content of the
betatron tune spectrum by tracking a particle with offset of
centroid phase position at every turn. Figure 2 shows that
when the crab cavities are on, additional harmonics appear
in the spectrum The addition shift has been found as well
in the tune distribution in detail. Physically, the emittance
growth depends on the frequency domain overlap between
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the noise spectrum and the betatron tune distribution. For a
bunch, because of particle’s motion is coupled by the syn-
chro-motion and betatron-motion, statistically, this tiny
drift of the tune could finally affect the geometric emit-
tances in both longitudinal part and transverse part.

Crab Cavities OFF
E}, = 100 (GeV)
¥p = 1066

Fe = 0.139 (MHz)

Crab Cavities ON
E, = 100 (GeV)
B = 106.6

Fe = 0.139 (MHz)

Figure 1: Particle’s tracking: a particle with the offset of

(Ax, Az, A(dp/p)) = (0. 38mm, 0.44mm, 0.0001).
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Figure 2: Betatron tune spectrum due to the offset of the
centroid phase-coordinate.
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Figure 3: 6D normalized emittance curves.
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We have performed a tracking simulation study to eval-
uate JLEIC proton beam emittance growth induced by crab
cavity RF phase noise, and benchmarked simulations with
— Analytic emit Bmad emit a theoretical model. It is found they agree very well. This
study will be extended to EIC as soon as its ion ring lattice

Figure 4: €Y caused by the crab cavities phase noise.
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