
THE RHIC SEQUENCER∗

J. van Zeijts, T. D’Ottavio, B. Frak, and R. Michnoff,
Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

The Relativistic Heavy Ion Collider (RHIC) has a high
level asynchronous time-line driven by a controlling pro-
gram called the ’Sequencer’. Most high-level magnet and
beam related issues are orchestrated by this system. The
system also plays an important task in coordinated data ac-
quisition and saving. We present the program, operator in-
terface, operational impact and experience.

1 INTRODUCTION

In the year 2000 commissioning run for the RHIC, the
machine was cycled through its modes using an ad-hoc
program, called the ’Sequencer’. This program, written
as a rapid prototype, did its job but was not easily user-
modifiable, and lacked sufficient progress feedback to the
user. Clearly there was a need to provide a more mature
tool. In this article we report on this tool, implemented for
the year 2001 run, used to control the sequence of events
required to make the RHIC ramp, acquire data, switch data
acquisition modes, and generally perform operations in a
repeatable manner.

Figure 1: Sequencer Operational Interface.

2 REQUIREMENTS

The basic requirements are listed below:

• Provide a tool to allow reproducible, and reliable op-
erations of the RHIC systems.

• Control the RHIC power-supplies modes as they cy-
cle from ‘Park’ to ‘Injection’, and are ramped to the
storage energy.

∗Work supported by U.S. DOE under contract No. DE-AC02-
98CH10886.

• Set up the various instrumentation systems to their ap-
propriate modes along the machine cycle.

• Allow a simple mechanism for the user to skip a step
in a sequence, and after an error, be able to restart the
remainder of a sequence.

• Have a simple in input language with a placeholder
for comments.

We will address these issues in the sections below.

3 SEQUENCES NAMING AND SYNTAX

Sequence names follow a naming convention using,
where possible, the hierarchy: ‘Machine System SubSys-
tem Procedure’, where Machine examples are: RHIC,
AGS, Booster, Linac, or Tandem. System examples include
the RHIC systems like: PowerSupplies, RF, Ramp, WCM
(Wall Current Monitor), IPM (Ionization Profile Monitor),
Permit, Abort, BLM (Beam Loss Monitors), and Artus
(Tune Measurement). Subsystem are specific per system
and can include: Schottky, PLL (Phase Lock Loop), or
Blue, Yellow for the specific ring.

The Sequencer input language is loosely based on the
LEP Sequencer language, each line starting with a key sig-
nifying normal run (R), skipping a line (S) , or break after
this line (B). More keywords can be added if required. Fol-
lowing the keyword is a comment, and finally the code to
be executed for that line. Build in primitives allow access
to the multiple control systems, or to the many servers used
to run the machine. Sub-sequences can be called by name
and arguments passed in a standard way. An example of a
sequence is given in the figure on the next page.

Apart from scripts written in the sequencer language,
standard shell scripts, or any executable programs, are rec-
ognized and callable as a sub-sequence.

4 IMPLEMENTATION

The Sequencer is implemented in about 500 lines of
Tcl/Tk code. This includes script parsing, GUI code, and
run-time support. Each script hierarchy is living in its own
name space, with multiple levels separated by ‘::’, mak-
ing full use of the Tcl naming resolution. Scripts can be
modified on the spot, and modified code is generated dy-
namically.

Most sequences are executed in-line, giving speed com-
parable with compiled applications. Shell scripts, and exe-
cutable programs are executed as sub-processes.

0-7803-7191-7/01/$10.00 ©2001 IEEE. 782

Proceedings of the 2001 Particle Accelerator Conference, Chicago

sequence "Ramping Preparation" Prep () {

R "Set slow factor" AdoSet -name wfgman.rhic -property slowFactorS -value 2

R "Download Ramp to WFG’s" Ramp::Download

R "Init RF Radial Steering" RF::InitRadial

R "Start WFG’s & MADC’s 240 second buffers" Trigger -event ev-psrampsave-off

R "Booster Off" Booster::Off

}

sequence "Start the Acceleration Ramp" Up () {

R "Instrumentation - AccRamp setup" InstrumSetup::AccRamp

R "Checking RF Feedback" RF::CheckFeedback

R "Trigger Blue rf track event" Trigger -event ev-brftrack

R "Trigger Yellow rf track event" Trigger -event ev-yrftrack

R "Enable accramp" EnableEvent -event ev-accramp

R "Trigger pre-acc event" Trigger -event ev-preacc

R "Delay/Synch with 0.25hz?" Delay -msec 4000

R "Setup the ev-stone events" SetupStoneTrigger

R "Trigger accramp" Trigger -event ev-accramp

R "Disable accramp" DisableEvent -event ev-accramp

S "Disable Blue Synchro" DisableEvent -event ev-breset-synchro

S "Disable Yellow Synchro" DisableEvent -event ev-yreset-synchro

R "set Blue ring spec" AdoSet -name ringSpec.blue -property ringStateS -value "ramping up"

R "set Yellow ring spec" AdoSet -name ringSpec.yellow -property ringStateS -value "ramping up"

R "waitfor LastStone" Waitfor -what LastStone

R "Trigger Flattop event" Trigger -event ev-flattop

R "Delay a bit" Delay -msec 5000

R "Freeze the MADC/WFG 30Hz buffers" Trigger -event ev-psrampsave

R "Booster on" Booster::On

R "set Blue ring spec" AdoSet -name ringSpec.blue -property ringStateS -value store

R "set Yellow ring spec" AdoSet -name ringSpec.yellow -property ringStateS -value store

R "Switch ev-stone trigger off" AdoSet -name rtdlEvents.stone -property controlS -value Off

R "Instrumentation - FlatTop setup" InstrumSetup::FlatTop

R "Check for PS Ramp Errors During Ramp" Ramp::CheckPSAfterRamp

}

sequence "Instrum AccRamp Setup" AccRamp () {

R "SnapshotEv - PeriodicStartOnAccRamp" SnapshotEvent::PeriodicStartOnAccRamp

S "SnapshotEv - 4Sec" SnapshotEvent::4Sec

S "SnapshotEv - Stepstone" SnapshotEvent::Stepstone

S "SnapshotEv - Transition" SnapshotEvent::Transition

R "Disable WCM presnapshot script" DisableEvent -event scriptTrigger.16

R "Disable WCM snapshot script" DisableEvent -event scriptTrigger.17

R "WCM - 5 min log" WCM::Logging -state on -seconds 300

S "WCM - FillPatt" WCM::FillPatt

R "WCM - Transition" WCM::Transition

R "Artus - SnapshotStoreAll" Artus::SnapshotStoreAll

S "Artus - StepstoneStoreAll" Artus::StepstoneStoreAll

S "Artus - 4SecStoreAll" Artus::4SecStoreAll

R "IPM - HVPS Auto Disable" IPM::HVPSAutoDisable

R "IPM - HVPS On" IPM::HVPSOn

R "IPM - SnapshotStoreAll" IPM::SnapshotStoreAll

S "IPM - StepstoneStoreAll" IPM::StepstoneStoreAll

S "IPM - TransitionStoreAll" IPM::TransitionStoreAll

S "IPM - 4SecStoreAll" IPM::4SecStoreAll

R "BPMavgOrb - SnapshotStoreAll" BPM::aveOrbit::SnapshotStoreAll

S "BPMavgOrb - StepstoneStoreAll" BPM::aveOrbit::StepstoneStoreAll

R "BLM - SnapshotStoreAll" BLM::SnapshotStoreAll

S "BLM - TransitionStoreAll" BLM::TransitionStoreAll

S "BLM - ResetSum" AdoSet -name blmRing.all -property resetSumA -value 0

R "BLM - ResetSum1 at Transition" BLM::ResetSum1AtTransition

}

Figure 2: Sequencer Input Language

783

Proceedings of the 2001 Particle Accelerator Conference, Chicago

Control System Access: Access to the multiple con-
trol systems used for Booster, AGS, and RHIC is through
CDEV services [1, 2], providing a consistent interface.

System Server Access: Many servers are used in the
running of RHIC [3, 4]. Servers are used for the manage-
ments of power supplies, administer ramps, etc. Access to
these servers is through the CDEV API.

Logging and Error Reporting: When running a se-
quence, progress and errors are reported by a running in-
dicator in the table column. In addition sequence and sub-
sequence enter actions are listed in the cmlog logging sys-
tem [5]. On failure of executing a line, the sequence will
stop, and the GUI will indicate where the error occurred.
The error is also reported to the logging system. At this
point the operator has to make a decision to skip the prob-
lematic line, or wait and fix the problem. Since repro-
ducibility will suffer if lines are skipped, the preferred sce-
nario is to solve the underlying problem before proceeding.

Figure 3: Sequencer Logging and Reporting Interface.

Extensions: In order to keep the main program re-
sponsive, time consuming tasks are handled by several sub-
systems. This includes for example checking the state of all
power supplies, or checking all WFG’s (Wave Form Gener-
ators) for errors. The ‘SequencerServer’ is a CDEV server
process that is callable from the Sequencer, and reports its
progress through call backs.

5 SUMMARY

The system is in continuous use in the RHIC control
room and has been instrumental in providing reproducibil-
ity in the operation of the machine. Critical systems are
setup in a standard way, and standard data is stored for
each ramp. The simplicity of the sequence hierarchy and
the straightforward language make it easy to maintain and
improve.

Figure 4: Successfully completed Ramp::NoBeam::Up se-
quence.

6 ACKNOWLEDGMENTS

The authors are thankful to the operations, controls, and
accelerator physics staff for giving feedback on the pro-
gram design and implementation. We also acknowledge
the influence of the Fermilab and LEP sequencers on our
tool.

7 REFERENCES

[1] J. Chen, et. al., “CDEV: An Object -Oriented Class Library
for Developing Device Control Application“, proceedings of
ICALEPCS 1995, Chicago.

[2] T. D’Ottavio, “Experience layering CDEV on top of the AGS
and RHIC Control systems”, proceedings of SOSH98, Villi-
gen.

[3] W. Akers, “An Object-Oriented Framework for Client/Server
Applications”, proceedings of ICALEPCS 1997, Beijing.

[4] J. van Zeijts, “CDEV Generic Servers for RHIC Commis-
sioning and Operations”, proceedings of ICALEPCS 1999,
Trieste.

[5] J. Chen et al., “CMLOG: A Common Message Logging Sys-
tem”, proceedings of ICALEPCS 1997, Beijing.

784

Proceedings of the 2001 Particle Accelerator Conference, Chicago

