
WEB BROWSER BASED APPLICATIONS FOR THE MIT-BATES
ACCELERATOR

F. Wang, K. D. Jacobs, E. Bisson, X. Geng and, J. B. van der Laan†

MIT-Bates Linear Accelerator Center, Middleton, MA 01949
B. Yang, TeleGea, Inc. Waltham, MA 02451

Abstract
A number of Web Browser based applications have

been developed to serve in the challenging environment
of the Bates storage-stretcher ring operation. Most of
them are accelerator physics applications that require
intensive data processing and analyzing efforts, with
moderate tasks of interfacing with the control system.
The basic idea of developing applications using a
commercial Web Browser is to truly realize object
orientated design and platform independence, thus making
development efforts more affordable. To implement this
concept, common graphic services and methods of
interfacing with control systems and various modelling
codes are the two essential pieces. As a start, a small
package of Java applet classes is developed to provide
basic graphic service, and Common Gateway Interface
(CGI) is used for interfacing the control system, etc., with
the Web server, as only light interfacing is required. For
more dynamic graphic user interface approaches, Java
servlets are used to replace CGI scripts and communicate
with applets. Two accelerator physics applications
(beam-based ring optics modelling and beam position
monitor (BPM) center offset calibration), and an
operational program for scaling the ring energy, are
presented to illustrate this method. The merits, limitations
and potential development of this approach are discussed.

1 INTRODUCTION
The initial motivation for developing web-based

applications is to search for a flexible and efficient way to
build comprehensive on-line accelerator physics appli-
cations in the dynamic evolution environment of the
accelerator facility at the MIT-Bates Linear Accelerator
Center [1-3]. There are several achievable features of this
approach:

• It is possible to organize complicated tasks in an
orderly manner based on object-orientated design.

• The applications can be platform independent.
• The applications are always based on widely used

commercial standards.
 These features are crucial to minimize development

and maintenance efforts. Careful programming method-
ologies are important to keep these features, when dealing
with the two key issues: graphic representation, and
interfaces to local control systems and modelling codes.

* Work supported by the U.S. Department of Energy cooperative
agreement DE-FC02-94ER40818.A000.
† on leave from NIKHEF, Amsterdam, The Netherlands.

2 PROGRAMMING METHOD

2.1 Graphical Display
Data visualization is essential to any complicated

problem solving process, especially for on-line appli-
cations. Large quantities of graphics should be generated
conveniently and available for display during the
application process. To realize platform independence,
Java applets are used for graphic displays. A Java applet
package was built to be a common building block for
basic graphic service. For common use purposes,
standard format input files are required by the basic
graphic service. These input files are text files with
simple data structures, and text “commands” to describe
how to draw. The “Top-Drawer” command format was
adopted here for convenience. This applet package
provides single or multi-graphic display applets. It
satisfies most of our needs. Data can be provided for
other plot tools to meet special graphic needs. Applets
can be made with more graphic user interface (GUI)
capacities using the Java Abstract Window Toolkit
(AWT). The simple text format can still be used inside
these applets if desired. Real-time GUI with local
systems requires special interface arrangements. It will be
discussed in the next section.

2.2 Interfacing
Two typical types of interfaces are required. One is to

communicate with various modelling codes, and the other
is to interact with the local accelerator control system.
The context of the modelling codes and the control
systems covers a broad range. Most parts of our control
system are under EPICS [4]. The EPICS channel access
programs are designed to be written in C. The control
codes from the previous homemade control system are
also in C. The modelling codes are written in FORTRAN,
C++, Perl or anything else. There are always security
restrictions for the network communication between the
web browser (applet, or the web page) and the above
mentioned server-side applications. The easy part of the
security concern in our situation is that the applications,
which affect real facility operations, are always put on the
lab controls Intranet. So the real problem becomes how to
get around the security constraints imposed by the
network languages themselves, like the sand box role for
Java applets.

The first method for interfacing is to use CGI. CGI is a
more or less platform-independent way to produce

0-7803-7191-7/01/$10.00 ©2001 IEEE. 831

Proceedings of the 2001 Particle Accelerator Conference, Chicago

dynamic web content, and CGI programs can be in many
languages. The applets in this case are used merely for
graphic display. This approach satisfied many of our
requirements. CGI programs launched from a web page
have certain security restrictions, such as the inability to
write a local file without pre-creating such files with
wide-open write permissions, etc. This brings some
“inconvenience”. But the real problem with CGI
interfacing is that it is not suited for high performance
dynamic applications because each CGI script fired from
the web server starts a new separate process.

The second approach is to use Java Servlets. A Java
Servlet is widely used Java server-side technology.
Without going into the advantages of using servlets (see
Ref. [5] for example), the goal here is to replace CGI
scripts for running dynamic web applications. A servlet
engine is needed in the web server, whether it is built-in
or an add-on, to deploy servlets. The idea is to run the
GUI from applets (or a web page) to communicate with
servlets which run server side applications. There are
very few security restrictions for servlets to do things on
the server machine if properly set up, such as writing
files, executing system commands, etc. However there is
a catch in using servlets: Java servlets are written in Java,
yet usually must work with native languages (C, C++,
etc.) to get things done. Java servlets do run Java Native
Interface (JNI) to interface with applications written in
native languages. Therefore they can do EPICS channel
access with JNI. Directly launching process executive
commands from a Java servlet program also works. This
makes running other codes and processes as easy as
running a CGI program. It is true that executing a process
is different than running a thread inside Java. However
except for high speed, multi-thread applications, the back
and forth communications can be concealed well inside a
servlet program. The speed and efficiency of an applet-
servlet network application may not be able to compare
with a local platform dependent X-window application,
but the overall programming efforts could be reduced for
many of the applications with moderate interfacing needs.

3 WEB BASED APPLICATIONS AT BATES

3.1 Beam-based Optics Modelling in the SHR
This was the first web browser based application at the

Bates Center. The Bates South Hall Ring has two basic
operational modes: storage and resonant extraction. A
discrepancy between the design optics and the measured
optics was observed. The beam-based modelling
method [6,7] was used to set the quadrupole strengths
correctly. The method requires measurement of the beam
response matrix. The measured response matrix is then
compared to the one calculated using the model optics.
The model parameters are then iteratively adjusted until
the difference between the modelled and measured matrix
is minimized. The linear matrix equation used in our fit
had a matrix size of 3720×187, half filled. It took a
workstation with a 450 MHz Pentium-II processor

roughly two minutes to do one iteration. However the
actual time consuming tasks were to figure out what was
wrong if the fit did not work. Problems arose from
instrumentation, hardware, improper operation, and even
unexpected beam physics phenomenon. The application
is written as a step-by-step procedure. It includes how to
set reference optics, how to make measurements, and how
to analyze data. Large quantities of raw data can be
analyzed and displayed on-line. This plays an essential
role in troubleshooting. After correction, the measured
lattice parameters (betatron tunes, amplitude functions,
etc.) were close to the expected optics. The corrected
lattice has been used for the resonantly extracted beam
experiment during the past year.

3.2 BPM Zero Offset Calibration
This application is intended for on-line dynamic BPM

zero offset calibration, using the quadrupole k (strength)
modulation method. The reference orbit is taken as the
magnetic centers of the quadrupoles. If the beam closed
orbit deviates from a quadrupole center, making small
variations in the quadrupole strength will shift the closed
orbit linearly proportionally to the original closed orbit
deviation, and to the fractional quadrupole strength
variation [8]. In the actual calibration, the coefficient
matrix of this linear dependency (BPM to Q-k modulation
response matrix) is measured and compared with that
derived from reference optics. By doing so, errors from
hardware problems, incorrect beam conditions, etc., can
be detected promptly. Once the closed orbit to
quadrupole centers are determined, the offset of each
BPM to the reference orbit can be deduced from the
known local geometrical layout and steering parameters.

The structure of this application’s web page is similar
to the optics modeling web page. It starts by verifying the
ring optics mode, then giving instructions for performing
the measurement and on-line data analysis. The display
applets for the measurement result are the same as those
for the optics modelling application. Figure 1 shows the
deviation of the closed orbit from a quadrupole center
measured by those BPMs which have suitable phase
relations to the quadrupole and also to the steering kickers
used in the BPM response coefficient matrix calibration.
This applet features quick switching between a number of
graphics. The “Closed Orbit Display” applet shown in
Figure 2 is somewhat different. It has more GUI
capacities to display detailed information on any selected
section of the ring. The applet still uses the same graphic
package but internally converts data to standard format
for plotting. This applet also uses an applet-servlet
connection to write BPM zero-offset results to local files.
Figure 2 depicts the BPM zero-offsets calculated from a
recent test run with a few independently powered
quadrupoles. Once the BPM zero offset data are
available, the closed orbit correction application will have
a much better reference.

832

Proceedings of the 2001 Particle Accelerator Conference, Chicago

Figure 1: Orbit-Q center excursion
(Multi-Graphic Display Applet).

Figure 2: Closed Orbit Display (Interactive Applet).

3.3 Ring Energy Scaling
The above applications involved complicated data

analysis. The ring energy scaling application, on the other
hand, is a typical operation program. For the resonantly
extracted beam experiment run last year, frequent energy
changes were required. There are several technical issues
which require beam-based adjustments at a few locations.
This prevents the energy scaling process from being very
straightforward. For one, the linac-recirculator magnet
settings and RF setting are beam current dependent. Also,
the trajectory and energy match of the linac-recirculator to
the energy compressing system have to be verified.
Finally, there are a number of magnets in the injection
system which are not accurately calibrated. Command
line programs or setting up manually are workable but
somewhat tedious and can easily lead to slightly different
approaches by different operators. The energy scaling
application organizes all the tasks in a single web page: to
choose and set reference files, preview scaled settings,

and scale magnets by sections. It turns a tedious task into
an enjoyable one, and helps to standardize the procedure.

The application uses CGI only and the efforts to build
and maintain such an application are minimal. Due to
magnet calibration inaccuracies, beamline scaling was not
perfect, but very close, and scaling for the ring was
accurate. Having a clear procedure helps to identify real
magnet setting issues. An example is the saturation effect
of the fringe field of the 180° recirculator dipoles. At
950 MeV the strength of the first (and only the first)
vertically focussing quadrupole in the recirculator back-
leg had to be doubled to compensate for the vertical
focussing reduction from the dipole, to keep the
recirculator optics close to operational values.

4 DISSCUSION
Internet technology has now become part of everyone’s

lives. This is a strong reason to try to make use of this
technical environment. The focus here is on
programming methods instead of building new software
tools. To understand the limitations of this kind of
“network” application, we need to look at our existing
local approaches: (A) MEDM [4] for EPICS. This GUI
manager, also run in a browser, is convenient, efficient
and reliable for routine operation, but it is not easy to
work with complicated tasks nor to fit to special needs.
(B) X-Motif applications are viable for some of our
routine applications with high performance, but
considerable development efforts are required. (C) Java
swing applications can be comparable with X-Motif
programs, but the Java to native language interface has to
be addressed.

The web browser based applications described here
lack high performance due to the use of a high level
network language such as Java, and the inherent extra
network communication. However this approach is a
significant addition to our problem solving tools. The
combination of object-orientated design, platform
independence, and the all-popular commercial software
based building method, makes the development and
maintenance of applications very efficient and adaptable
to new Internet technology evolution. It could greatly
enhance the ability of individuals and teams to realize
more creative work with less intimidation from dealing
with time consuming programming efforts.

5 REFERENCES
[1] K. Jacobs, et al., WPPH060, these proceedings.
[2] G. T. Zwart, RPPH151, these proceedings.
[3] F. Wang, et al., “New lattice for the South Hall Ring”,

Bates Internal Report B/SHR/2001/01.
[4] http://www.aps.anl.gov/epics/docs/index.php
[5] J. Hunter with W. Crawford, “Java Servlet Program-

ming” published by O’Reilly & Associate, Inc., 1998.
[6] J. Safranek, Nucl. Inst. Meth., A 338, p. 27 (1997).
[7] F. Wang, et al., PAC 1999, p. 3101.
[8] P. Kuske, EPAC 1996, p. 887.

833

Proceedings of the 2001 Particle Accelerator Conference, Chicago

