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Abstract

Fast bunch rotation of high-intensity proton or ion
bunches above transition is - in principle - supported by
the self-bunching effect of the attractive space charge force
(”negative mass instability”). Due to the broad-band na-
ture of the space charge impedance, the highest harmonics
of this negative mass mode grow fast and inhibit compres-
sion, unless the bunch rotation is accelerated by a suffi-
ciently high rf-voltage.
Using particle-in-cell simulation we establish the thresh-
old below which effective compression is still possible. We
find that the required rf-voltage for compression of a given
bunch above transition can be reduced at most by a factor 2
compared with compression below transition, where space
charge requires extra voltage.

1 INTRODUCTION

In a previous paper [1] we have shown that the rf require-
ments for compression of high-intensity proton (or ion)
bunches cannot easily be reduced by approaching transition
from below due to the dominating repulsive space charge
forces. The attractiveness of small and negative slip fac-
tors is in fact limited, if space charge dominates the rf volt-
age and leads to a significant coherent momentum spread
prior to completion of the compression. The question is
thus of interest whether one could still gain rf-power by
trying to carry out a fast bunch compression above transi-
tion where space charge is attractive and enhances the ap-
plied rf-voltage. However, the self-focusing effect of space
charge is not limited to the envelope motion, but also ap-
plies to all higher order modes which is the well-known
negative mass instability [2]. Since the growth rate in-
creases with the mode numbern (up to some valuen∗), the
instability on the shortest wave-lengths is expected to ap-
pear first, which possibly limits or quenches the compres-
sion. In this paper we study the possibility of successful
compression by using a sufficiently fast active rotation such
as to overcome the destabilising effect of space charge. The
plan of the paper is as follows. In Sect. II we review some
basic concepts and analytical formulae concerning the neg-
ative mass instability. In Sect. III we discuss the simulation
program and the effective space charge impedance result-
ing from solving Poisson’s equation numerically. In sec-
tion IV we present simulation results with conclusions in
section V.

2 REMARKS ON THE NEGATIVE MASS
INSTABILITY

Above transition perturbations of arbitrary wave-length
in the beam current profile grow exponentially in time, be-
cause an energy variation induced by space charge on sin-
gle particles results in a change of their angular velocity in
the opposite direction. For wavelengths below a threshold
(depending on the momentum spread of the beam), phase
mixing due to particles of different longitudinal momenta
prevents collective motion and stability is preserved. The
mechanism that keeps the beam stable in this case is not
quite the same as Landau damping [3]. In fact, this damp-
ing is not a kinetic process which involves energy trans-
fer from the electrostatic wave to single particles resonant
with the wave. The momentum spread here acts as a hy-
drodynamic property of the beam, regardless of the de-
tailed shape of the distribution function, and assures stabil-
ity above a certain mode numbern∗. This is also confirmed
by the fact that pure space charge waves are stationary in
the beam frame, and distribution functionsf(p) usually
have a zero slope atp = 0, whereas Landau damping re-
quires a running wave and a finite slope of the distribution
function to ensure energy transfer to the wave from reso-
nant particles. Stability boundary and curves at constant
growth rate of instability in the impedance plane can be
rigorously applied only to coasting beams. Nevertheless,
the extension to bunched beams is generally accepted if the
wave-length is small compared with the bunch length and
the transit time of the perturbation over the bunch length
is long compared with the growth time [4]. This “local
Keil-Schnell” or “Boussard” criterion is certainly met in
the present case, since negative mass modes always de-
velop on very short wave-lengths and are stationary waves
in the bunch frame. The rise time of an instability can be
estimated analytically for a working point on the imaginary
axis far outside the stability boundary by ignoring the mo-
mentum spread:

∆ωinst = ±ω0

[
e|η|nλmax

2πm0γβc
|�(Z||(n))|

]1/2

. (1)

3 COMPUTER SIMULATION

The issue of fast bunch compression above transition
has been studied by means of computer simulation using
the codePATRIC. This is a particle-in-cell program, which
solves the equations of motion in 3D, whereas Poisson’s
equation is solved in cylindrical(r − z) geometry assum-
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ing a perfectly conducting beam pipe [5]. Using the param-
eters that are listed in Tab. 1, we have carried out a number
of simulations of bunch rotation in order to explore the de-
teriorating effect of space charge above transition. Runs
have been made with106 macroparticles on ar − z grid of
32 × 2048 cells.

Table 1: Overview on the simulation parameters.
Circumference, 2πr0 20 m
Protons per bunch,Nb 1013

Ekin 2 GeV
Bunch length,zin 5 m
Momentum spread(δp/p0)in 0.002
Beam radius,Rb 0.02 m
Pipe radius,Rp 0.1 m
γt 2.56
Compression factor,χ 0.2

3.1 Space charge impedance

In order to get a correct modelling of the negative
mass instability up to highest frequencies, it is essential
to compare the spectrum of the space charge impedance
seen by the simulation beam with the theoretical expec-
tation. While|Z||sc(n)| increases linearly withn for low
harmonic numbers, a more refined model is needed for
large n. Bisognano [6] obtained a Lorentzian shape for
|Z||sc(n)|/n, which defines a cut-off at high mode num-
bers, but its application is limited to ultra-relativistic beams
and to ratiosRp/Rb of about 2. A general expression for
the space charge impedance at all harmonic numbers and
arbitraryγ andRp/Rb has recently been obtained by Al-
Khateebet al. [7]. In Fig.1 the curves that are compared
with a numerical evaluation fromPATRIC (dots) are the
Bisognano formula (red dashed curve) and the newly cor-
rected formula [7] (blue curve). It appears that the agree-
ment between Al-Khateeb’s formula for the space charge
impedance and the numerically evaluated one is excellent,
which confirms that the corrected expression for the space
charge impedance coming from Ref. [7] can be used for the
analytical estimates in this study.

3.2 Instability rise times

From the diagram in Fig. 1 and by using the instability
maps in the impedance plane for the bunch of Table 1, we
can estimate the harmonic number where the negative mass
instability is expected to appear first, and its corresponding
growth time.
The instability rise time can be plotted as a function of the
harmonic number, as is shown in Fig. 2. The asymptote
n = 650 due to reaching the stability region comes from
the equality:

�[Z||(650)]
650

= 2πF
βm0cγ|η|

eλmax

(
δp

p0

)2

= 17.63Ω ,
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Figure 1: Space charge impedance seen by the beam.

whereas the minimum rise time occurs for harmonic num-
bers around 250.
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Figure 2: Rise times versus harmonic number for the bunch
of Table I.

4 COMPRESSION SIMULATIONS

It is straightforward to derive that, having defined the Σ
parameter as [1]:

Σ = − 3g0Nbrp

β2γ3ηzb(δp/p0)2b
, (2)

the condition for a successful bunch compression above
transition energy without concerns relative to negative
mass instability reads:

|Σ| ≤ 1.4 . (3)

This translates into a condition on the compression ratio
χ which is χ ≥ 2.5. As the compression ratio cannot by
definition exceed unity, this means that it is never possible
to get a bunch compression only using the attractive
space charge force above transition. This should not
be surprising, because being all negative mass modes
suppressed when the impedance working point is inside
the stability region, the mode n = 1 is equally suppressed
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and no self-compression can therefore take place. It
is of interest to investigate whether conditions exist, in
which an active bunch compression can be successfully
carried out even for larger values of |Σ|, when a large
fraction of the negative mass modes are also excited. The
advantage would obviously be to save rf power, because
the voltage required by a compression at a higher |Σ| once
the compression factor has been fixed can be sensibly
smaller.
Following the general parameters of Table I, and mod-
ifying one of them at a time, we have simulated the
evolution of a proton bunch in order to show how it can
be rotated above transition using an appropriate voltage,
even when space charge is not negligible and the negative
mass effect on high harmonic numbers would otherwise
make the process inefficient. The voltage that is tentatively
applied to achieve compression is the one which would
be required for compression of the same proton bunch
having the same |η|, but below transition and neglecting
space charge. This voltage is exactly twice smaller
than the one which should be applied below transition in
order to carry out the compression against space charge [1].

0

1

2

3

4

5

0 0.02 0.04 0.06

t (ms)

B
un

ch
 le

ng
th

 (
m

)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 0.02 0.04 0.06

t (ms)

M
om

en
tu

m
 s

pr
ea

d

Figure 3: Evolution of bunch length and momentum spread
during compression of a bunch having Σ = −6.

We start from simulating exactly the case of Table I.
Fig. 3 shows how momentum spread and bunch length
evolve during the process. The compression appears to be
still effective, and the final bunch is about 1 m long with
small tails. The over-momentum observed at the end of the
compression is only about 17% higher than the expected
value. The parameters of Table I correspond to a beam
which has Σ = −6. By carrying out more simulations in
which the beam energy and the machine geometry were
kept constant, we have found out that every variation of
the other parameters that still delivers an equal value of Σ
does not affect the success of the compression.The bunch
compression becomes uneffective if we try to operate it at
a higher value of Σ, as appears from Fig. 4 (Σ = −12).
In reality, the |Σ| criterion applies only when the energy
of the beam and all geometric parameters are fixed. Other-
wise, the ratio between the compression time (as calculated
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Figure 4: Evolutioh of bunch length and momentum spread
during compression of a bunch having Σ = −12.

ignoring space charge) and the rise time of the fastest insta-
bility (evaluated following the procedure explained in the
previous section), Tcompr/τinst should be kept lower than
about 100.

5 CONCLUSIONS

In this paper we have shown that it is possible to carry
out the bunch rotation of an intense proton beam by using
an adequate voltage, which in some conditions can be up
to twice smaller than the same required below transition at
the same value of |η|. The voltage used for the rotation is
in fact exactly the one needed below transition for the same
value of |η|, but having ignored space charge. The gen-
eral criterion to establish whether the bunch can be com-
pressed by this voltage must consist in making sure that
the ratio between compression time and fastest instability
rise time, Tcompr/τinst, is maintained below a threshold of
about 100.
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