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Abstract
The longitudinal and transverse space-charge effects on

bunch rotation in the longitudinal phase space designed to
produce an intense short proton bunch are discussed. A cri-
terion for length broadening due to space-charge modifica-
tion of the rf potential is given. As for the transverse effect,
the incoherent space-charge tune shifts will affect the bunch
rotation unless the chromaticities are properly corrected.

1 INTRODUCTION
Intense proton bunches as short as 1 to 2 ns are necessary

for the efficient production of pions and muons in order to
(1) minimize the expensive cooling process of the muons
and (2) to obtain a reasonable amount of polarization of µ±

in a muon collider and of νµ and ν̄µ in a neutrino factory.
This can be done by bunch rotation in the longitudinalphase
space prior to the extraction of the proton bunches. Here,
we investigate the longitudinal and transverse space-charge
effects on the intense beam during the rotation.

2 LONGITUDINAL EFFECTS
An experiment was performed at the IUCF Cooler Ring

to study the rotation of proton bunches at 202.8 MeV below
transition [1]. The ring has a circumference C = 2πR =
86.83 m, slip factor η = −0.828, and rf harmonic h = 5.
The maximum rf voltage is Vrf = 1 kV, corresponding to a
small-amplitude synchrotron tune of νs= 1.164×10−3. It
was lowered adiabatically to a minimum of∼5 V and raised
suddenly back to 1 kV. The bunch would be compressed in
∼ 1

4 synchrotron oscillation. The minimum bunch length
observed was about στ =3.8 ns.

The equations of motion governing the rf phase φ and
fractional momentum spread δ in the bunch rotation are

φn+1 = φn + 2πh|η|δn , (1)

δn+1 = δn +
eVrf

β2E
sinφn+1 +

∆Uspch

β2E
, (2)

where n is the turn number, E is the total particle energy, β
is the particle velocity relative to the velocity of light, and
e is the particle charge. The energy increase per turn due to
the space-charge force is

∆Uspch = − e2

ω0

∣∣∣∣Zn
∣∣∣∣
spch

∂ρ

∂τ
, (3)

where f0 = ω0/(2π) is the revolution frequency and
[Z/n]spch is the space-charge impedance. Because of the
presence of electron cooling, we have assumed a Gaus-
sian distribution for the longitudinal bunch profile ρ(τ) =
Nbe

−τ2/(2σ2
τ )/(
√

2πστ ), with Nb = 1×109 is the number
of particles in the bunch and στ the rms bunch length.

The synchrotron tune of each particle will be reduced dif-
ferently by the space-charge force, with the maximum at the
core. This actually helps to reduce the nonlinearity of the

Figure 1: Phase-spaceplot of bunch rotation when the rms bunch
length is shortest when [Z/n]spch = 2000, 7000, 15000 Ω.

rotation so as to let the tails of the bunch to catch up. The
moment when the rms length is shortest will be delayed as
the space-charge impedance increases. However, when the
space-charge force is too large and exceeds the rf focusing
force, the particles will embark on an unstable hyperbolic
trajectory, and bunch lengthening results. Simulations for
|Z/n|spch = 2000, 7000, and 15000 Ω are shown in Fig. 1
at the moment when the rms bunch length is shortest. As
shown in Fig. 2, the minimum bunch length ofστ = 3.70 ns
is obtained when the impedance is at about 7000 Ω.

From Fig. 2, it appears that in order to have a final com-
pressed bunch length στ . 3.85 ns, the space-charge
impedance per harmonic must be limited to |Z/n|spch .
15000 Ω. In other words, the ratio of the space-charge force
to the rf force must be less than the critical value of

Sp-ch force
Rf force

∣∣∣∣
critical

=
eNb|Z/n|spch√

2πhω2
0σ

3
τVrf

∼ 22.0 . (4)

It is important to point out that the actual space-charge
impedance of the IUCF Cooler is only |Z/n|spch ≈ 1500 Ω.
What we are saying is that, while a rms bunch length στ =
3.85 ns can be obtained in the absence of space charge, a
space-charge impedance as large as |Z/n|spch ≈ 15000 Ω
will not lead to a longer compressed rms bunch length al-
though the rf potential will be severely distorted.

The IUCF experiment is compared with the Fermilab
proton driver in Table I. Notice that the space-charge-
to-rf ratio for Phase II operation of the Fermilab proton
driver is roughly at the critical value. Thus, we expect the
bunch compression will not be affected longitudinally by
the space-charge force.

Figure 2: Plot showing shortest rms bunch length στ obtained
through rotation as a function of the space-charge impedance.
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Table I: Comparison of the space-charge-to-rf ratio for IUCF ex-
periment and Fermilab proton driver in Phases I and II.

IUCF Fermilab Proton Driver
Critical Phase I Phase II

Circumference (m) 86.83 711.32 711.32
Extraction K.E. (GeV) 0.203 16 16
h 5 18 18
No. per bunch Nb 1 109 1.7 1012 2.5 1013

|Z/n|spch (Ω) 15000 2.639 2.639
Vrf (kV) 1.00 1400 1400
Extraction στ (ns) 3.85 3 1
Sp-ch-to-rf ratio 22.0 0.06 23.9

Our consideration so far emphasizes the effect of space-
charge distortion of the rf potential. Microwave instability
is less important during the rotation, because the local mo-
mentum spread increases. However, microwave instability
can become a problem when the rf is lowered adiabatically
so that the bunch fills the bucket. To avoid microwave insta-
bility, it will be better to employ instead the method of syn-
chronous phase jump. The synchronous phase is jumped
by π so that the bunch center is at an unstable fixed point
in the longitudinal phase space. The bunch will be length-
ened along one set of separatrices and compressed along
the other set. After some time t, the synchronous phase is
jumped by −π so that the bunch center is again at the sta-
ble fixed point. Allow for∼ 3

8 of a synchrotron oscillation,
the bunch will rotate to the situation of shortest length. This
is illustrated in Fig. 3. The drift time t along the separa-
trices cannot be too long. Otherwise, not all particles can
return back to inside the bucket after the last phase switch.
This allows us to derive the maximum possible compres-
sion ratio [1]

(στ )final

(στ )initial

∣∣∣∣
max

∼
√

2√
3(σφ)i

, (5)

where (σφ)i is the initial rms bunch length in rf radian.
One can also avoid the development of nonlinear tails

during the final rotation of∼ 3
8 synchrotron oscillation. In-

stead of switching back to the stable fixed point, the bunch
is extracted immediately at the end of the drift along the sep-
aratrices. The bunch is then sheared back to an upright posi-
tion in the beam line via a lengthy optical system with local
momentum compaction, or the R56 element of the transfer
matrix. Since this is not a rotation, the bunch length will
be
√

2 longer than what was derived above. However, one

Figure 3: Bunch compression by rf phase jump. Note that the
particle motion is relatively linear near the unstable fixed point.

may be able to recuperate this
√

2 by allowing the bunch
to drift somewhat longer along the separatrices before the
extraction. This is possible because the bunch need not be
recaptured into a bucket later.

3 TRANSVERSE EFFECTS
During bunch rotation, the bunch length is shortened and

the incoherent space-charge tune shift increases. As an ex-
ample, consider a former Fermilab design, which consists
of a small ring with a circumference of 180.649 m accel-
erating protons from the K.E. of 1 GeV to 4.5 GeV. The rf
harmonic is h = 4 and there are nb = 4 bunches each with
Nb=5.0×1013 protons. The 95% normalized emittance is
εN95 = 200×10−6 πm. The incoherent space-charge tune
shift at injection is

∆νsc = − nbNbrp
2γ2βεN95Bf

= −0.131 , (6)

where the bunching factor Bf = 0.25 has been used and a
transverse uniform distribution has been assumed.

Bunch rotation is performed at the extraction K.E. of
4.5 GeV. When the rf voltage is reduced to its minimum,
assume that the rms bunch length is στ ∼ 1

6
the bucket

length. We would like to compress the bunch to στ =
1ns by suddenly raising the rf voltage. During bunch rota-
tion, the bunching factorBf changes from 0.418 to 0.0164,
while the incoherent space-charge tune shift changes from
∆νsc=−0.009 to −0.225 and different particles have dif-
ferent betatron tunes. If the reduction in betatron tune mod-
ifies the transition gamma to such an extent that some par-
ticles will find themselves near transition, higher order mo-
mentum compaction will be needed because of the large
momentum spread. This may result in ruining the whole
bunch rotation procedure as a result of nonlinearity.

3.1 A Theorem [2]
Let us first consider a storage ring without rf and ne-

glect space charge. The canonical variables are (ax, Jx),
(ay, Jy), and (−∆", δ). Here ax and ay are the angle vari-
ables conjugate to the transverse actions Jx and Jy. ∆" is
the path length in excess of the length of the on-momentum
closed orbit. The Hamiltonian will be cyclic in ax, ay, and
∆". It is given up to second order by
H = ν0xJx+ν0yJy+

+aJ2
x+2bJxJy+cJ2

y+dδ2+fJxδ+gJyδ , (7)
withnoO(δ) term because comparison is made with respect
to the on-momentum closed orbit. The betatron tunes are

νx =
〈
dax
dθ

〉
=

∂H

∂Jx
= ν0x+ 2aJx+ 2bJy+ fδ , (8)

νy =
〈
day
dθ

〉
=

∂H

∂Jy
= ν0y+ 2cJy+ 2bJx+ gδ , (9)

and the path length difference per turn ∆"0 is

−∆"0
2π

=
〈
−d∆"

dθ

〉
=

∂H

∂δ
= 2dδ + fJx + gJy , (10)

where 〈 〉 denotes the average over one turn. We can readily
identify a, b, and c as amplitude-dependent detunings, d =
−1

2α0R with α0 the momentum compaction factor, and f

2894

Proceedings of the 2001 Particle Accelerator Conference, Chicago



and g as chromaticities. Thus, correcting the chromatici-
ties will alleviate the dependence of path length on betatron
amplitudes. The theorem can be extended by adding more
higher order terms to the Hamiltonian, and some higher
order chromaticity terms will enter into the right side of
Eq. (10), which also require correction to avoid amplitude
dependency on path length

3.2 Incoherent Tune Shift
Now let us add rf cavities. If the proton driver is

dispersion-free at the cavities, the additional term in the
Hamiltonian will not be dependent on the momentum de-
viation δ, and therefore Eq. (10) will not be affected, even
though this additional term in the Hamiltonian depends on
the betatron oscillation amplitudes, Jx and Jy.

We next include the self-field. Notice that the self-field
space-charge tune shift in Eq. (6) is inversely proportional
to γ3β2 (since εN95∝ γβ). Thus, the tune shift is momen-
tum dependent and can be written as, with z=x, y,

∆νz ≈ ∆νsc,z
(
1− 3δ + 12δ2

)
, (11)

where ∆νsc,z is evaluated at the nominal momentum. It is
evident that the last two terms represent the first two lowest
orders of chromaticity generated by the transverse space-
charge force. Notice that the betatron action Jz is related
to the unnormalized emittance by ε = 2Jz and the trans-
verse offset z from the off-momentum closed orbit by z =√

2βzJz, where βz is the betatron function. For a round
Kapchinskij-Vladimirskij (KV) beam [3] where the trans-
verse distribution is uniform, ∆νsc,x = ∆νsc,y = ∆νsc is
Jx and Jy independent∗. Thus, the contribution of the self-
field space-charge tune shift to the Hamiltonian is

∆H=∆νsc (Jx+Jy)
(
1−3δ+12δ2

)
−1

2∆αscRδ
2 . (12)

The first term gives the tune shifts and chromaticities pro-
vided by space charge. The last term is called Umstätter ef-
fect. It is the modification of the momentum compaction
factor by space-charge tune shifts through the lattice. Al-
though ∆αsc can be momentum dependent, it must be am-
plitude independent. If not, the space-charge tune shifts will
be altered. For a FODO lattice, the change in transition
gamma is roughly equal to the horizontal space-charge tune
shift (exact for a uniform focusing lattice). For a flexible
momentum compaction lattice, this term can be very much
smaller. The additional chromaticities are

∆ξx=−3∆νsc(1−8δ) , ∆ξy=−3∆νsc(1−8δ) . (13)

The additional changes in path length and γT are
∆"0
C

=∆νsc
Jx+Jy

R
(3−24δ)−

[
2∆νsc
γ3
T

δ+· · ·
]
, (14)

∆γ
T
≈12γ3

T
∆νsc

Jx+Jy
R

+ ∆νsc . (15)

In Phase II of the proton driver, the number per bunch is
Nb=2.5×1013 and rf harmonic h=18. For the στ = 1 ns
compressed bunch, the bucket bunching factor is Bf ≈√

2πhf0στ = 0.01899. With normalized 95% emittance
∗Even with other more realistic distributions, the result of the following

discussions will not be much altered (see Ref. [5]).

εN95 = 60×10−6 πm and an average betatron function of
〈βx〉=10 m, the self-field space-charge tune shift is ∆νsc=
−0.297 at extraction. The maximum actions for betatron
motion are Jx=Jy=1.67×10−6 m. With the 2% momen-
tum aperture in the vacuum chamber and the nominal tran-
sition gamma of γ

T
= j27.71, the maximum contributions

to the additional fractional path difference are 2.62×10−8

for the first term of Eq. (14) and 5.57×10−7 for the second.
The maximum rf voltage used during the bunch rotation is
Vrf =1.4 MV, givinga synchrotron tune of νs=1.02×10−3.
Thus during the 1

4
-synchrotron-period bunch rotation, the

total cumulative maximum additional path difference due
to space-charge tune shift is 0.32×10−6 for the first term
and 4.56×10−5 for the second term. On the other hand, the
ratio of the rms bunch length at extraction to the ring cir-
cumference is στ/T0 = 42.11×10−5, which is much larger,
implying that the effect of space-charge tune shift on bunch
compression through rotation is very minimal.

For the 4.5 GeV ring discussed earlier, with 〈βx〉∼10 m
and στ = 1 ns at extraction, ∆νsc = −0.450. With Vrf =
4 MV and γ

T
= j10, the cumulative fractional path-length

offset of 3.90× 10−4 is still much smaller than the ratio
στ/T0 = 16.6×10−4; the influence of space-charge tune
shift is again small. On the other hand, the potential-well
distortion due to space charge discussed in Sec. 2 can be
more severe for this ring of the earlier design. For example,
with a longitudinal space-charge impedance |Z/n|spch =
25 Ω, the space-charge-to-rf ratio is as large as 47.3.

There has been the idea of changing the lattice near ex-
traction so that the beam is near transition and the bunch
narrowing effect near transition can be utilized [4]. The
beam particles, however, will see a spread in space-charge
tune shift of ∆γ

T
≈ ∆νsc as a result of Umstätter effect.

When the synchronous particle is less than |∆νsc| from the
transition gamma, some particles will be above transition
and some below making bunch rotation impossible.

It is important to point out that by having the J zδ2 term
in the additional Hamiltonian [Eq. (12)], we must include
the same term into the original space-charge free Hamilto-
nian [Eq. (7)]. This is the next order chromaticity, which
will contribute a down-shift to γT just like the first term
Eq. (15) with ∆νsc replaced by 1

24
(ξx1Jx + ξy1Jy), where

ξz = ξz0 + ξz1δ+ · · · . For a linear machine, ξz1 = −2ξz0.
Thus, this order of chromaticity can lead to a much larger
spread in γT than the contribution from the space charge,
and may require correction to ensure the bunch rotation.

4 REFERENCES

[1] K.M. Fung, M. Ball, C.M. Chu, B. Hamilton, S.Y. Lee, and
K.Y. Ng, Phys. Rev. ST Accel. Beams 3, 100101 (2000).

[2] E. Forest, private communication.

[3] I.M. Kapchinskij and V.V. Vladimirskij, Proc. 2nd Int. Conf.
High Energy Accel. and Instr., CERN, Geneva, 1959, p. 274.

[4] C. Ankenbrandt, et al., Phys. Rev. ST Accel. Beams 1,
030101 (1999).

[5] K.Y. Ng, Space-ChargeEffects on Bunch Rotation, Fermilab
Report FN-702, 2001.

2895

Proceedings of the 2001 Particle Accelerator Conference, Chicago


