
FOKKER-PLANCK SIMULATIONS OF BUNCHED BEAMS: HIGH-Q RF
MODES AND RESPONSE FUNCTIONS

N. Towne�, National Synchrotron Light Source
Brookhaven National Laboratory, Bldg. 725B, Upton, NY 11973-5000y

Abstract

A computer code was developed to extend the method
of Warnock and Ellison for integrating of the non-linear
Vlasov-Fokker-Planck equation for bunched beams (The
2nd ICFA Advanced Accelerator Workshop on the Physics
of High Brightness Beams, 1999). The code handles ar-
bitrary radio-frequency potentials and high-Q impedances
and is used to study instabilities in stretched bunches. This
paper describes how high-Q resonant rf modes are incorpo-
rated into the code. A method by which this time-domain
code is used to calculate beam response functions, which
are response functions that include the beam acting back
on itself through the ring impedance, is also described and
applied to stretched bunches.

1 INTRODUCTION

Simulation of bunches in storage rings have been used
to study the limiting behavior of instabilities. Most com-
mon is the simulation of instabilities driven by broadband
impedance (short-range wakes) [1, 2, 3]. Simulation of in-
stabilities driven by high-Q impedances is also done [4].
The simulations assume that the bunches are evolving in
a harmonic radio-frequency (rf) potential. These studies
have shed considerable light on the limiting of these insta-
bilities and on relaxation phenomena. These studies have
also highlighted the limits of linearized treatments of co-
herent modes and frequencies in bunched beams [5, 6, 7].

Two extensions of Warnock and Ellison’s (W & E) [1]
methods for the integration of the Vlasov-Fokker-Planck
(VFP) equation were developed, one that permits simula-
tion with non-harmonic rf potentials for Landau damping
and lifetime improvement [8, 9] and a second that per-
mits the inclusion of high-Q resonances with their long-
range wakes, as well as a broad-band impedance, in the
ring impedance. Although the former is a significant ex-
tension of W & E’s methods and is essential for the study
of the limiting of instabilities of stretched bunches [7], it is
not discussed here [10] due to space limitations. The latter
is discussed in Sec. 3. A third computational method that is
not an extension of W & E’s methods was also developed.
It permits the calculation of frequency-domain beam re-
sponse functions from time-domain simulations. Although
the beam’s response to thetotal voltage in the ring was
treated by Shaposhnikova [11], this method for calculating
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the beam’s response to anexternally applied voltage, which
does not include the voltage induced by the beam through
the ring impedance and acting back upon the beam, is de-
scribed and applied to a stretched bunch in Sec. 2.

2 BEAM RESPONSE FUNCTIONS

A bunch’s longitudinal response to an external excitation
is determined by its response to the total field in the ring,
termed the beam transfer function (BTF) [11, 12], and by
the field the bunch induces in the ring that in turn acts back
on the bunch. The induced field arises from the ring’s lon-
gitudinal impedance. This response to an external excita-
tion is here termed the beam response function (BRF) and
is useful for measuring the environment of the bunch, i.e.,
the longitudinal impedance.

Codes that simulate bunches in the time domain have the
potential for providing a means to compute the frequency-
domain BRF of a bunch. In a linear system, a frequency-
domain response function is the Fourier transform of an ap-
propriately defined impulse response. A time-domain code
can readily calculate impulse responses since the impulse
response is the evolution of the bunch from the appropriate
initial condition at some starting time. So the problem is to
determine the initial condition in the function space and the
Fourier transform appropriate to determine the frequency-
domain response function of interest—in this case the BRF.
This is the task of this section.

Both the pickup and kicker are assumed to be located
in the ring at azimuthal angle� = 0. We first consider
the evolution of transients and impulse responses in stable
bunches. One applies a voltageV (�; t) to a bunch with the
property thatV goes to zero att = �1. The co-moving
coordinate� is related tot and� through� = !0t + �.
The initial/boundary condition is that	 is the stationary
Haı̈ssinski distribution [13]	0 att = �1. The bunch then
evolves according to the linearized VFP equation giving a
perturbed distribution

Æ	(�; p; t) = 	(�; p; t)�	0(�; p; t) = BVFPfÆ(t)f(�)g ;
(1)

where BVFP is the linear operator mapping functions
V (�; t) to phase space densitiesÆ	(�; p; t) via the VFP
equation, andp is the momentum variable canonically con-
jugate to� with respect to the rf Hamiltonian. The operator
P generating the line density from the phase-space distri-
bution by integrating away the variablep, and the Fourier
transformFm with respect to�, are applied in turn to yield
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a Fourier coefficient of the perturbed line density

Æ�m(t) = �m(t)� �0m(t) = Rm fV (�; t)g (2)

where
Rm � FmPBVFP (3)

and�0m is themth Fourier coefficient of the Haı̈ssinski
line density. Now let the form ofV be

V (�; t) = f(�)g(t) (4)

wheref is an arbitrary phase dependence andg(t) ! 0 as
t ! �1. Rm induces a mapHmf of the functionsg to
line densitiesÆ�mg(t) through

Hmf fg(t)g � Æ�mg(t) = Rm ff(�)g(t)g (5)

where thef dependence of�mg is suppressed. Since the
system is linear and time independent,Hmf is a convolu-
tion.

Æ�mg(t) =

Z
dt0Hmf (t� t0) g(t0) (6)

H is readily calculated for any givenf with a time-
domain simulation by specifyingg(t) = Æ(t) and simu-
latingHmf (t) = Æ�mg(t). The use of the delta function at
t = 0 means that a non-zero initial condition att = 0 that
depends onf is specified forÆ	 and that the integration
begins att = 0.

We now turn to the frequency domain. Frequency-
domain response functions are ordinarily measured by ex-
citing the bunch by a voltageV (t) / e�i!t with a steady
sinusoidal time dependence at a frequency! = 
 + n!0

such thatj
j � !0. Since� is a co-moving coordinate
such that� = !0t + � = lT0 (l is an integer) where the
pickup and kicker are located, this time dependence is

V = V (�; t) ' V0e
�i(
t�n�) (7)

whereV0 is the peak voltage andt = lT0 picks up the slow,
and� the fast, time dependence of theV (t). Inserting Eq.
(7) into Eq. (6), we get

Æ�me�i
t(t) = (Cmn(t) + iSmn(t)) Æ e
�i
t (8)

where theÆ denotes convolution and the two functions
Cmn andSmn are defined

Cmn(t) = Hm cosn�(t) and (9)

Smn(t) = Hm sinn�(t) (10)

corresponding to the two terms ofein� = cosn�+i sinn�.
Each is calculated in a simulation providingg(t) = Æ(t).
Equation 8 is readily Fourier transformed to

Æ~�me�i
t (!) = V0 Tmn(!) Æ(! �
) (11)

where the beam response functionTmn(!) is

Tmn(!) = ( ~Cmn(!) + i ~Smn(!))=2� (12)
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Figure 1: Simulated beam response functionsT9 55, T18 55,
T36 55, T55 55, and T135 55 (top to bottom) for a fully
stretched 500-mA bunch in the National Synchrotron Light
Source (NSLS) Vacuum Ultra-Violet (VUV) ring. Realis-
tically detuned main- and harmonic-cavity impedances are
included in the simulation. The vertical scale has an arbi-
trary scale factor. Machine parameters are given in Table
1.

and ~Cmn and ~Smn are the Fourier transforms ofCmn and
Smn.

Equation Eq. (12) is the expression used to calcu-
late beam response functionsTmn from a time-domain
code. Two calculations are performed starting with sta-
ble bunches with Haı̈ssinski distributions. One is given an
initial kick with cosn� phase dependence, and the other
with sinn� phase dependence. Each simulated line-density
function of time is Fourier transformed with respect to� at
harmonicm and with respect to time to obtain~Cmn

~Smn

and combined according to equation Eq. (12).
Figure 1 shows an example of a beam response function

calculated using the method described in this section. The
impedance of the ring includes the main- and harmonic-
cavity accelerating-mode impedances with realistic detun-
ing for beam-loading compensation. The peak with smaller
offset is due to a dipole-like mode while the other peak is
due to a quadrupole-like mode.

3 HIGH-Q RF MODES

Incorporation of high-Q rf modes in a time-domain sim-
ulation requires tracking the amplitude and phase of each
mode with time as the modes and the bunch evolve in con-
cert in the context of the VFP equation. Talman describes
an rf mode as a two-dimensional real vector evolving ac-
cording to a matrix equation describing the kicks the bunch
imparts to each mode each turn [14]. The method described
in this section uses a complex-valued quantity (phaser)~Vh
representing the mode whose frequency!h is near thehth
revolution line, i.e.,!h � h!0 � !0, where!0 is the rev-
olution frequency. The real rf field in the mode is

Vh(t) = Re[ ~Vh(t)ei!ht] (13)
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and ~Vh(t) has slow time dependence. This section quickly
derives the discrete-time evolution of~Vh(t).

The wake function for the rf mode is [15]

Wh(t) =
kh

cos �h
ei(
ht+�h) + c.c. (14)

where�h is the damping rate, c.c. denotes the complex
conjugate of the preceding term,
h = �!h + i�h, kh =
�hRh is the loss factor,Rh is the impedance,�!h =p
!2
h � �2

h, and

tan �h = �h=�!h (15)

Let z = e�i
hT0 . Then the recurrence relation for~Vh sam-
pled turn by turn obtained by convolving the beam current
expressed in terms of the line density and Eq. (14) is

~Vh(lT0) ' z�1 ~Vh((l � 1)T0) + k0h�h(lT0) (16)

where

k0h = 2�
khT0Iav
cos �h

ei�h (17)

�h(lT0) =
1

2�

Z
2�

d� �(�; lT0) e
�ih� (18)

T0 = 2�=!0, and� is the line density with normalizationR
d� � = 1. With the rf mode located in the ring at az-

imuthal angle� = 0 and the co-moving phase� at turnl
determined by2�l = !0t+ �, the fast time dependence of
Vh(t) is provided by the� dependence of the function

Vh(�; pT0) � Vh(t)

= ~Vh(pT0)e
�ih� + c.c. (19)

Table 1: NSLS VUV ring and main- and harmonic-cavity
parameters (separated by a forward slash), symbols, and
values.

parameter symbol value
synchronous energy E0 800 MeV
energy loss per turn U0 20.4 keV
momentum compaction � 0.0245
revolution frequency !0 2� � 5:876 MHz
radiation damping rate 1/7 ms
fractional energy spread �� 5� 10�4

rf harmonic numbers h 9/36
rf peak voltages Vh 80/19.7 kV
rf phases  h 74:2Æ=� 90Æ

rf cavity impedances Rh 435/100 k

loaded quality factors Qh 6800/3360

4 CONCLUSION

An extension of the methods for the integration of the
VFP equation developed by Warnock and Ellison [1], a

code that tracks the particle distribution function in lon-
gitudinal phase space under the influence of a broad-band
impedance, was described to permit high-Q impedances to
be included in the ring impedance. A method for calcu-
lating beam response functions, which are response func-
tions that include the beam-induced voltages acting back
on the bunch, was also described and demonstrated with a
stretched bunch.
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