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Abstract 
An analysis of the electromagnetic field based on 

adaptive finite element is presented in this paper. The 
performance of the adaptive algorithms, based on an 
element-element h-refinement technique, is assessed. The 
features of the refinement indictors, adaptation criteria 
and error estimation parameters are discussed. The 
strategy of the adaptive mesh refinement method applied 
to the eigenvalue problem is studied to improve the 
accuracy of the eigenvector. Numerical results for pill-box 
cavity and disc-loaded structure are shown. 

1  INTRODUCTION 
The strategy of FEM is to divide the solution space into 

a large number of area or volume elements and derive the 
linear equations based on the physics problem.  

Generally in finite element analysis or other mesh based 
on method, as the mesh is refined, the accuracy of the 
solution, as well as its cost, goes up. However, whenever 
refinement is located in areas where the solution has high 
error, the increase in accuracy is relatively high than the 
increase in cost. In adaptive mesh generation, error 
estimates are used to refine the mesh where the error is 
higher than an acceptable value and to make coarse mesh 
where the error is lower than an acceptable value. 
Adaptive meshing is one of the key research topics being 
investigated to produce more robust and user-friendly 
finite element analysis environments in many disciplines. 
This paper studies the adaptive method applied to the RF 
cavity or wave-guide in accelerators. After giving a brief 
summary of the FEM (Finite Element Method), we derive 
a rigorous posteriori bound on the error estimation and 
adaptive refinement. Examples are also given of the use 
of adaptive refinement. 

ADAPTIVE STRATEGY 
The adaptive refinement procedure is based on the use 

of two key quantities, evaluated on the basis of a tentative 
solution: the refinement indictor and the convergence 
parameter. In addition, an estimate of the error of the 
solution is evaluated. 

The usual continuity assumption used in the field based 
finite element formulations results in a continuous field 
from element to element, but a discontinuous field 
gradient. Therefore, the reasonable error norm of the field 
for each element can be defined as follows 

2/1

)�()�( 






 Ω∇−∇∇−∇= ∫
Ω

de T
e

EEEE ,   (1) 

where E is the exact field, E� is the finite element solution. 
The actual err norm is calculated from the smoothed 
values of the element nodal gradient by the recovery 
process instead of the exact field. In this smoothing 
process, it is assumed that the approximation quantities 
are interpolated by the same basis function E and that 
they fit the original ones in a least square sense. This 
method is better than the averaging of the element nodal 
gradient which is used by ANAYSIS[1].  

A more practical representation of the error norm in 
term of a percentage error is 
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e

e values can be used for adaptive 
mesh refinement. It has been shown by Babuka and 
Rheinboldt [2] that if 

e
e is equal for all elements, then 

the model using the given number of elements is the most 
efficient one. This concept is also referred to as "error 
equilibration". 

We define refinement indictor
eee ee /=ξ , if ξe>1, 

the size of element e must be reduced and the mesh will 
require refinement, otherwise, the size of element must be 
increased and the mesh will be coarsened. Thus the 
predicted size of the new element based on an element-
element h-refinement technique can be calculated from 
the current element size as P

eee hh /1/ξ= , where eh is the 
predicted element size, he is the current element size and 
P is the order of the shape functions.  

The estimate of the error of the solution can be 
evaluated as  

%1002

2

×=
∑

∑

e e

e e

q

e
η .              (3) 

The summation in above formula is carried on the all 
elements.  
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3     APPLICATIONS 
The numerical examples for the application of the 

adaptive method are shown in this section. The adaptive 
meshing procedure is dependent on both the geometry and 
the field. Therefore, the application for different geometry 
and field will be shown in the following paragraphs. 

The pill-box cavity is the typical example which is 
often used to check the numerical calculation. The 
adaptive meshing is easy to applied for circular 
cylindrical coordinate and the accuracy is high. Instead of 
circular cylindrical coordinate, we use Cartesian 
coordinate to study the TM01 mode with adaptive 
method. Quadrant is used to represent the cavity in order 
to save calculation time. Figure 1 shows the initial mesh 
and the adaptive mesh. The curve part is metal boundary 
and symmetric condition is applied on the two radial 
boundaries. The number of element, estimated error and 
accuracy of frequency are shown in table 1. The theory 
frequency for TM01 with radius 10 cm is 
1147.42498187125 MHz. The specified maximum error is 
1.5×10-4. The estimated error is almost same as the 
specified maximum error after the first refinement and is 
two times smaller than the specified maximum error after 
the second iteration refinement. The estimated error is 
bigger near the circular boundary, which can be shown 
from figure 1(c). The accuracy of frequency is about 
7.3×10-7 with 4112 adaptive refinement elements. 
However, the frequency accuracy is only 2.75×10-5 with 
6587 uniform meshed elements. Therefore the adaptive 
meshing method is very useful to improve the accuracy 
and save calculation time.  

Table 1    refinement results for pill box with radius 10cm 
refinement 
iteration 

number of 
element 

estimated 
error 

accuracy of 
frequency 

0(initial mesh) 45 1.358×10-2 2.730×10-3 
1 2717 1.594×10-4 3.018×10-6 
2 4112 6.361×10-5 7.302×10-7 

Figure 1 Adaptive mesh for pill box (a: initial mesh; b: 
first refinement mesh; c: second refinement mesh) 

 
The estimated error by formula (3) is quite different 

from the field err or the frequency error. An error of 
1.5×10-4 by formula (3) roughly correspond to an error of 
2.25×10-8 in the field. 

Many accelerator structures and other microwave 
structures used in accelerator are axisymmetric. The 
eigenmode equation for the axisymmetric structures is 
usually written in the cylindrical coordinates R, φ and Z. 
For the disc-loaded structure with round iris, the adaptive 
mesh is easily to be implemented. Figure 2 shows the 
initial mesh and the first iteration adaptive mesh which 
gives the estimated error 4.419×10-4. The structure has 
parameters: t=5.842mm, D=34.99mm, b=40.989mm, 
a=10.363mm and ρ=2.921mm. The specified maximum 
error is 5×10-4 and the frequency of the TM01 mode is 
2838.419946 MHz by FEM and 2838.419471 MHz by 
LONGTRANSVRS[3]. The frequency accuracy is about 
1.673×10-7.  

(a)                                                        (b) 
Figure 2 Adaptive mesh for disk-loaded structure  

(a: initial mesh;  b: first refinement mesh) 
 

The efficiency of the adaptive mesh is mainly decided 
by the iterations. In general, the initial mesh always has 
small number of elements and the goal of the error can be 
reached after first refinement. Therefore, our adaptive 
mesh is efficient.  

 While adaptive refinement methods are well accepted 
in the solution of the Possion equation (electrostatic 
potential for electrostatic field and partial scalar potential 
magnetostatic field), little work seems to be done in 
solving the wave equation. Some significant differences 
from the Possion equation exist. For accelerating 
structure, the discretized globally built finite element 
matrix equation takes the form 

EE BA λ=                                (4) 
where λ represents the many eigenvalues of eq.(4), which 
have directly corresponding relationships to the frequency 
of the modes.    

There is a different eigenvector E paired with each 
eigenvalue.  The error for eigenvector E is estimated in 
eq.(1).  Different eigenvector should have different error. 
Therefore, the adaptive refinement is carried out based on 
one of the eigenvectors. Figure 3 shows the refinement 
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mesh based on different eigenvector. The local error for 
each eigenvector is different. A peculiarity of the cavity 
analysis is that we are usually not interested in all modes 
of a cavity, but only in the dominant mode corresponding 
to the lowest eigenvalue or the second eigenvalue for 
design reasons.  Therefore, we can apply adaptive 
refinement based on this dominant mode. However, if the 
high order modes are cared, the adaptive method must be 
applied on the high order modes. Figure 4 shows the 
accuracy of the first eight TM modes by refinement based 
one different eigenvectors (IMOD in the figure). When 
the refinement is based on the first eigenvector as shown 
in figure 2, the accuracy is high for the first eigenvalue. 
However, it is lower for all high order modes (IMOD=1 in 
figure 4). In general, the field pattern for the lower order 
modes is simple (uniform), the local error is distributed at 
small parts of the domain. Therefore, the result based on 
such error is not good for high order eigenvectors. Figure 
4 shows that the refinement based on the 4th eigenvector is 
best for all eigenvalues.  

Certainly, good results can be obtained by applying the 
adaptive refinement based on one field at one time. 
However, it will take much time to calculate many fields. 
In order to get better results for all eigenvectors at the 
same time, we can apply the adaptive refinement based on 
all interested eigenvectors. The green circle curve in 
figure 4 shows the result based on the all first eight 
eigenvectors. We can see that the accuracy for all 
eigenvectors is much better than other case. For the 
second mode, the accuracy reaches 8.0×10-8. The 
estimated error of all modes is less than the specified 
maximum error 8×10-4.  
 

 
(a)                                 (b)                                                  

Figure 3 refine mesh based one different eigenvector 
(a) adaptive refinement base on 6th eigenvector 
(b) adaptive refinement base on 8th eigenvector 
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Figure 4 Accuracy of the first 8 TM modes based 
on different eigenvectors with specified maximum 
error 8×10-4 

 
4   SUMMARY AND CONCLUSIONS 

 
The adaptive refinement method can be successfully 
applied to eigenvector problem in the electromagnetic 
field analysis. The refinement based all interested 
eigenvectors will greatly help the improvement of all the 
interested modes. 
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