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Abstract

We report on recent developments and tests of a novel
particle tracking algorithm. This algorithm tracks particles
element by element through the unstructured grid, stop-
ping and then restarting at each element boundary cross-
ing. Within each element the particles are tracked in the
element’s local coordinate system. Excellent accuracy is
achieved with high order Runge-Kutta integrators despite
discontinuities arising from the finite element field solu-
tion. Tests on a cylindrical coaxial capacitor meshed with
linear, quadratic and cubic tetrahedral elements are pre-
sented. The results are compared with a Boris push on a
structured grid.

1 INTRODUCTION

A novel particle tracking algorithm for unstructured
grids with quadratic and higher order elements is being de-
veloped and incorporated into the finite element gun code
MICHELLE. Our desire to accurately and rapidly model
complicated devices, such as a gridded gun, motivates us to
use unstructured grids and to implement and develop effec-
tive algorithms for such grids. The novel algorithm intends
to robustly achieve excellent tracking accuracy despite dis-
continuities arising from the finite element field solution
and despite large variations in element size.

The novel algorithm tracks particles element by element
through the unstructured grid, stopping and then restarting
at each element boundary crossing. Within each element
the particles are tracked in the element’s local coordinate
system using a Runge-Kutta integrator. Prior to each step
the time step is chosen such that a specified spatial step size
relative to the element size is approximately achieved. Af-
ter each step a polynomial representation of the trajectory
segment is constructed and checked for intersections with
the element boundary.

2 THE TEST CASE

We begin to evaluate the accuracy of the novel particle
tracking algorithm with a simple test case: tracking parti-
cles through the vacuum fields of a coaxial cylindrical ca-
pacitor. The inner radius is 1/2, the outer radius is 1 and
the height is 1. The potential difference ismc2/q (511 kV
for electrons). Neumann boundary conditions are applied
to the two ends. Particles start at rest on the inner surface
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and travel to the outer surface, whereγβ =
√

3. The transit
time iscτ = 0.79978157.

The finite element field solution is not exact. The dis-
cretization necessarily introduces field errors, and the elec-
tric field is discontinuous at element boundaries. The finite
element matrix equations were solved with four successive
applications of the conjugate gradient method in order to
eliminate errors in the basis coefficients to the maximum
extent possible.

The mesh size varies from 235 to 263643 tetrahedral el-
ements. These meshes are labeled by an element sizeh =
n1/3, wheren is the number of tetrahedral elements. Linear
meshes were generated and smoothed using ICEM-CFD.
For quadratic and cubic meshes, only elements with one
or more edges on a cylindrical surface werep-refined in
shape. The remaining elements in the interior kept their
linear shapes. Basis functions, on the other hand, are all
p-refined for the quadratic and cubic cases.

Particles are launched from the center of each face on the
discretized inner cylindrical surface. The position, momen-
tum and transit time is tabulated when the particle reaches
the discretized outer cylindrical surface. Trajectories which
end at the top or bottom of the cylindrical capacitor are dis-
carded. The position and momentum errors are expressed
in axial, radial and azimuthal components, with the launch
point defining the radial direction for each trajectory. For
each run the RMS error of all trajectories is computed.

3 GRID INDUCED ERRORS

We first examine the influence of field errors on par-
ticle tracking. We make the particle tracker’s time step
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Figure 1: Grid-induced transverse position error vs element
size for an unstructured grid of tetrahedral elements.
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Figure 2: Transit time error (solid) and run time (dashed)
vs step size and element size for tracking with the Euler
method and linear interpolation on a linear mesh with a
linear basis.

very small so that step-induced errors are negligible. The
transverse position error is shown in Fig. 1 for the linear,
quadratic and cubic element shapes and basis functions.
The behavior of the transverse momentum error and the
transit time error is similar. Note that the unstructured tetra-
hedral grid introduces transverse electric fields comparable
to the radial electric field error. This contrasts with a con-
formal structured grid, where the transverse electric fields
are much smaller than the radial electric field error.

In the linear case, the transverse position error converges
slowly. This suggests that high accuracy beam size and
emittance calculations on an unstructured tetrahedral grid
with linear basis functions will be challenging. One could
employ prism elements near the emission surface to re-
duce the transverse electric field errors where they have the
greatest impact on particle trajectories.

4 STEP INDUCED ERRORS

For each case (linear, quadratic and cubic) and each
mesh (labeled by element sizeh) we exercise various
Runge-Kutta integrators and interpolation schemes and we
vary the relative spatial step size∆s/h.

Fig. 2 is a contour plot of transit time error tracking with
the Euler (1st order) method and using linear interpolation
on a mesh of linear element shapes and basis functions. The
error with quadratic interpolation is identical. Contours of
run time on a 500 MHz PC are also shown. To make the
step-induced error small compared to the grid-induced er-
ror, many steps per element are required as one refines the
mesh.

Fig. 3 is a similar plot for tracking with the improved
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Figure 3: Transit time error (solid) and run time (dashed)
for tracking with the modified Euler method and quadratic
interpolation.

Euler (2nd order) method. Only a few steps per element are
needed in order to reduce the step-induced tracking error to
a fraction of the grid induced error.

Note that we expect these two plots to bound the transit
time error from a Boris-type pusher on an unstructured grid
which doesn’t stop and restart at element boundaries. At
sufficiently large step size a Boris push will have 2nd order
convergence, but at smaller step sizes it will have only 1st
order convergence due to the discontinuities in the electric
field. Unfortunately, this 1st order convergence will appear
when the step-induced errors are approximately an order of
magnitude larger than the grid-induced errors. In contrast
to such a Boris-type pusher, the novel particle tracking al-
gorithm maintains its convergence rate even when the step
size is small.

Fig. 4 shows that, even at one step per element, the step-
induced tracking error is negligible compared to the grid-
induced tracking error when using the classical 4th order
Runge-Kutta method with cubic interpolation on a linear
mesh with a linear basis.

Which tracker and what step size should one use? If the
mesh can be easily coarsened or refined then the element
and step sizes might be chosen to provide the greatest ac-
curacy in the least time. If the mesh is fixed, then one might
choose the step size small enough to make the step-induced
error a modest fraction of the grid-induced error, but not
much smaller. Looking at run time vs accuracy on a lin-
ear mesh with a linear basis, the best choice is the classical
4th order Runge-Kutta method with quadratic interpolation
at ∼2 steps per element. The cubic interpolation scheme
suffers from a robust but slow bisection polynomial root
solver. We plan to improve this root solver and reassess the
run time with cubic interpolation.
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Figure 4: Transit time error (solid) and run time (dashed)
for tracking with the classical 4th order Runge-Kutta
method and cubic interpolation.

Fig. 5 shows the behavior of the classical 4th order
Runge-Kutta method with cubic interpolation on a cubic
mesh with a cubic basis. Some error cancellation is ev-
ident in the shape of the contour lines. We qualitatively
remove such cancellations in our assessments of accuracy
vs run time. The classical 4th order Runge-Kutta is the best
choice for accuracy vs time for the cubic case. Use either
quadratic interpolation at 10–20 steps per element or cu-
bic interpolation at∼10 steps per element. We’ve found
that the 1st and 2nd order Runge-Kutta methods are clearly
inadequate for the cubic mesh/basis because particle track-
ing consumes orders of magnitude more time than the field
solver in order to reduce the step-induced tracking errors to
the level of the grid-induced tracking errors.

5 STRUCTURED GRID COMPARISON

We ran the same test model using the MICHELLE code’s
Boris pusher on a conformal structured grid of linear hex-
ahedral elements. There are no transverse position or mo-
mentum errors in this case. The transit time and momen-
tum at the discretized outer cylinder surface was linearly
interpolated from the last step of the trajectory. The grid-
induced transit time error for the conformal structured grid
is much smaller than a comparable size unstructured grid
of linear tetrahedral elements. Fig. 6 compares accuracy
vs run time. The linear structured grid with a Boris pusher
is 10–20 times faster than the linear unstructured grid with
the novel particle tracking algorithm. The scaling with time
is similar. The quadratic and cubic unstructured grids are
superior to the linear structured grid.
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Figure 5: Transit time error (solid) and run time (dashed)
for tracking with the classical 4th order Runge-Kutta
method and cubic interpolation on a cubic mesh with a cu-
bic basis.
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Figure 6: Transit time error vs run time.

6 CONCLUSION

We’ve demonstrated the capabilities of the novel particle
tracking algorithm on a simple test problem. The mod-
est convergence of the transverse position on a linear mesh
with a linear basis is a concern, but the convergence with a
quadratic or cubic mesh/basis is very good.

Much work remains, however, before we are confident
that we can accurately model a device as complicated as a
gridded gun. For example, performance in the presence of
space charge needs to be studied. Also, the accuracy of the
finite element solution for the electric potential in the pres-
ence of sharp corners and edges needs to be evaluated, and
the expected degradation in accuracy needs to be mitigated.
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