
A LAYER-BASED OBJECT-ORIENTED PARALLEL FRAMEWORK FOR
BEAM DYNAMICS STUDIES

J. Qiang∗, LANL, Los Alamos, NM 87545, USA
R. D. Ryne, LBL, Berkeley, CA 94720, USA

Abstract

A three-dimensional time-dependent parallel particle-
in-cell framework has been developed to model complex
accelerator systems. This framework has been designed
based on object-oriented methodology using a layered
structure. The layer-based object-oriented software de-
sign helps to encapsulate both the details of the physical
application and its parallel implementation and gives the
program good maintainability and extensibility. The new
framework is currently being applied to the study of the
LEDA beam halo experiment at the Los Alamos National
Laboratory. Using the new framework running on a parallel
supercomputer we can simulate, with high resolution, mul-
tiple bunches propagating and merging through the LEDA
system, including the effects of interbunch and intrabunch
3D space-charge forces. Such high resolution multi-bunch
simulation is beyond the capability of current serial beam
dynamics codes.

1 INTRODUCTION

Macroparticle simulation plays an invaluable role in
the study of charged-particle beams transporting through
accelerators. A number of computer programs using
macroparticle simulation have been developed during the
last few decades [1, 2, 3, 4, 5]. However, as far as we
know, at present, there is not a totally object-oriented pro-
gram doing three-dimensional macroparticle simulation of
intense beams using parallel computers in the time do-
main in the accelerator community. With growing inter-
est in high resolution large scale simulation on parallel
computers, a computer program based on object-oriented
software design will have better maintainability, reusability
and extensibility, resulting in a longer lifetime. In this pa-
per, we have developed a multi-layer based object-oriented
software framework for accelerator beam dynamics system
study.

2 PHYSICAL MODEL AND
COMPUTATION METHODS

We will consider charged particles moving in an acceler-
ator that can be described by the Poisson-Vlasov equation:

∂f

∂t
+ r′ · ∂f

∂r
+ p′ · ∂f

∂p
= 0 (1)

∗ jiqiang@lanl.gov

where f denotes the distribution function of particles, a su-
perscript prime denotes the derivative with respect to time,
r is the spatial coordinate, p is the conjugate momentum
with p′ = F, where F is the force including the contri-
butions from both the external applied field Fext and the
self (space-charge) force Fself . The space-charge force
in this equation is a mean-field approximation of the N-
body micro-particle Coulomb force. In the beam frame,
the space-charge force can be obtained from the solution of
Poisson’s equation

∇2φ(r) = −ρ(r)
ε0

(2)

and

Fself = −q∇φ (3)

where φ is the electrostatic potential in the beam frame, ρ
is the particle spatial charge density, and ε0 is the vacuum
permittivity. The solution of the Poisson equation can be
written as

φ(r) =
∫

G(r, r′)ρ(r′)dr′ (4)

where G is the Green’s function of the Poisson’s equa-
tion. For three-dimensional open boundary conditions, the
Green’s function can be written as:

G(r, r′) =
1

4πε0|r − r′| (5)

The Poisson-Vlasov equations are solved using the
particle-in-cell approach. Here, macroparticles are gener-
ated with the same charge to mass ratio as the real particles
in the beam bunch. The equations of motion for the parti-
cles are integrated using a second order leap frog algorithm.
Within each step, the particles’ spatial coordinates are ad-
vanced a half step using their present velocities. Then the
particles are deposited onto a three-dimensional spatial grid
to obtain the charge density distribution. Using the charge
density distribution on the grid, the convolution Eq. 4 can
be calculated using a FFT based algorithm [6]. The electric
fields on the grid are calculated from the potential using
a central finite difference scheme. The fields on the grid
are reinterpolated back to the particles to obtain the space-
charge force on the particles. The particles’ momenta are
advanced for one step using both the external applied force
and the space-charge force. Finally, the particles’ coordi-
nates are advanced for another half step using the updated
velocities to complete a full step.

0-7803-7191-7/01/$10.00 ©2001 IEEE. 3060

Proceedings of the 2001 Particle Accelerator Conference, Chicago

3 OBJECT-ORIENTED MULTI-LAYER
SOFTWARE DESIGN FOR BEAM

DYNAMICS SYSTEM SIMULATIONS

A multi-layer based object-oriented software design is
a system method of organizing the subsystems into an or-
dered set of ”virtual worlds” [7]. In this design, objects
identified from the analysis are organized into different
physical modules. The physical modules are built into an
ordered layer structure. The objects in the lower layer pro-
vide the service for the objects in the upper layer. Usually,
the upper layer is related to the problem domain and the
lower layer is related to the available resources. In applying
this design to beam dynamics system simulations, we have
defined a four-layer framework. These four layers are the
data structure layer, function layer, application layer and
control layer. A schematic plot of these four layers together
with physical modules in each layer is given in Fig. 1. Here,

Figure 1: A schematic plot of the multi-layer structure for
beam dynamics system simulations.

the data structure layer contains an array module, stan-
dard template library module and constant module. Each
module may consist of one or more class objects work-
ing together to fulfill some given functions. The classes
in this layer are very generic and can be reused for differ-
ent problem domains. The function layer contains a com-
munication module, numeric function module and utility
module. The communication module is a group of classes
handling explicit communication among different proces-
sors in the parallel implementation. The numeric function
module provides all numeric function libraries used in the
simulation. The utility module provides auxiliary functions
for the simulation, e.g. a sorting function. The modules in
this layer are relatively independent of the details of beam
physics and could be reused in other system simulations.
The application layer contains a beam bunch module, beam
line element lattice module, field module and computation
domain module. The modules in this layer are directly as-
sociated with the beam dynamics system. The beam bunch
module defines the class information of a charged parti-
cle beam in the accelerator. The lattice module consists
of classes defining external focusing and acceleration ele-

ments. Run-time polymorphism is used in the implemen-
tation so that a single operation using the function of the
beam line element base class can automatically select the
appropriate function from different concrete external beam
line element objects to execute. The field module defines
the classes for dealing with electromagnetic fields gener-
ated by the moving beam bunch. The computational do-
main module contains the classes describing the global and
local geometry domain in the simulation. Since the mod-
ules in this layer are directly related to the beam physics,
they might not be reusable in the other fields of study. The
control layer contains a simulator module, driver module
and input/output module. The simulator module contains
function classes to set up the simulation environment, e.g.
linac simulator, and do the simulation. The driver mod-
ule provides a driver needed to run the simulation. The
input/output module contains classes providing input and
output functions. The object-oriented multi-layer structure
gives the program good resuability, maintainability and ex-
tensibility. The classes in the lower layers can be reused in
different applications. A class object is clearly defined in
association with a given module and layer. New function
modules and class objects can be added to different layers
without affecting the other modules or classes. A software
system with good maintainability and extensibility could
have a longer life in principle.

4 PARALLEL IMPLEMENTATION AND
APPLICATION

The computational model described above is imple-
mented on high performance parallel multiprocessor com-
puters using a message passing programming paradigm. A
two-dimensional domain decomposition approach has been
employed in the parallel implementation. The physical pro-
cessors are mapped onto a two-dimensional logical proces-
sor grid. Each processor has a unique identification num-
ber and contains a local computation domain. The parti-
cles with their spatial coordinates inside the local compu-
tation domain are assigned to that processor. Computation
is done simultaneously on all processors with local data.
When particles move to a different computation domain,
communication will be used to send these particles to the
corresponding domain. In the Poisson solver and field cal-
culation, when the information of more than a local pro-
cessor is required, communication will be used to transfer
the data to the local processor. A detailed discussion of the
parallel implementation can be found in reference [5].

As an application, we have applied this new frame-
work to the study of the LEDA halo experiment at the
Los Alamos National Laboratory [8]. In this experiment, a
mismatched beam is transported through a periodic focus-
ing system. The system consists of 52 alternating-focusing
quadrupole magnets with a focusing period of 41.96 cm.
The gradients of the first four quadrupole magnets can be
adjusted to create a mismatch that excites the breathing
mode or the quadrupole mode. Since there is no longi-

3061

Proceedings of the 2001 Particle Accelerator Conference, Chicago

tudinal focusing, the bunched beam out of the RFQ will
gradually debunch and merge longitudinally through the
system. Fig. 3 shows the X − Z plot of three bunches

Figure 2: X − Z distribution of three beam bunches near
the end of halo channel.

near the end of transport system from a three-bunch simu-
lation. It is seen that there is significant overlapping among
the three bunches from the debunching of the beam. Only
the middle bunch will be used as a comparison with ex-
perimental data since it has the correct boundary condi-
tions. A longitudinal periodic boundary condition is ap-
plied to the whole computation domain containing the three
bunches. Fig. 3 and Fig. 4 give the simulation results of
the transverse beam rms size and maximum amplitude for
the breathing mode and the quadrupole mode, plotted at
the center of the drift spaces between quadrupole magnets.
The physical parameters for the simulation are I = 75mA,
E = 6.7MeV and f = 350MHz. From Fig. 3, the two
transverse components of the breathing mode are in phase,
while the quadrupole mode in Fig. 4 has the two compo-
nents out of phase. Work is now underway to compare the
simulation results with experimental measurements.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 2 4 6 8 10 12

di
sp

la
ce

m
en

t (
m

)

distance (m)

X rms
Y rms
X max
Y max

Figure 3: Transverse beam size as a function of distance
for the breathing mode in the LEDA halo experiment.

5 ACKNOWLEDGMENTS

We would like to thank Drs. K. Crandall and T. Wan-
gler for suggesting using multiple bunch simulation for

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 2 4 6 8 10 12

di
sp

la
ce

m
en

t (
m

)

distance (m)

X rms
Y rms
X max
Y max

Figure 4: Transverse beam size as a function of distance
for the quadrupole mode in the LEDA halo experiment.

the LEDA experiment. This work was performed on the
Cray T3E and IBM SP at the National Energy Research
Scientific Computing Center located at Lawrence Berke-
ley National Laboratory, and the SGI Origin 2000 at the
Advanced Computing Laboratory located at Los Alamos
National Laboratory. This work was supported by the U.S.
Department of Energy, Office of Science, Division of High
Energy and Nuclear Physics, under the project, Advanced
Computing for 21st Century Accelerator Science and Tech-
nology. This work was also supported by the Division of
High Energy Physics through the Los Alamos Accelerator
Code Group.

6 REFERENCES

[1] M. E. Jones, B. E. Carlsten, M. J. Schmitt, C. A. Aldrich, an
d E. L. Lindman, Nucl. Instr. and Meth. in Phys. Res. A318,
323 (1992).

[2] A. Friedman, D. P. Grote and I. Haber, Phys. Fluids B 4,
2203 (1992).

[3] R. Ryne and S. Habib, in: Computational Accelerator
Physics, ed. J. J. Bisognano and A. A. Mondelli, AIP Con-
ference Proceedings 391, Woodbury, p. 377, New York,
1997.

[4] J. Qiang, R. D. Ryne, S. Habib, Comput. Phys. Comm. 133,
18 (2000).

[5] J. Qiang, R. D. Ryne, S. Habib, V. Decyk, J. Comput. Phys.
163, 434 (2000).

[6] R. W. Hockney and J. W. Eastwood, Computer Simulation
Using Particles, Adam Hilger, New York, 1988.

[7] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen, Object-Oriented Modeling and Design, Prentice-
Hall, New Jersey, 1991.

[8] T. P. Wangler, et al., ”Experimental Study fo Proton-Beam
Halo Induced by Beam Mismatch in LEDA,” these proceed-
ings.

3062

Proceedings of the 2001 Particle Accelerator Conference, Chicago

