
A PRE- AND POST-PROCESSOR FOR THE ICOOL MUON TRANSPORT
CODE �

W.M. Fawleyy, LBNL, Berkeley, CA 94720, USA
Abstract

ICOOL[1] is a Fortran77 macroparticle transport code
widely used by researchers to study the front end of a
neutrino factory/muon collider[2]. In part due to the de-
sire that ICOOL be usable over multiple computer plat-
forms and operating systems, the code uses simple text
files for input/output services. This choice together with
user-driven requests for greater and greater choice of lat-
tice element type and configuration has led to ICOOL in-
put decks becoming rather difficult to compose and modify
easily. Moreover, the lack of a standard graphical post-
processor has prevented many ICOOL users from extract-
ing all but the most simple results from the output files.
Here I present two attempts to improve this situation: First,
a simple but quite general graphical pre-processor (NIME)
written in the Tcl/TK[3] to permit users to write and main-
tain ASCII-formatted input files by use of simple macro
definitions and expansions. Second, an interactive post-
processor written in Fortran90 and NCAR graphics, which
allows users to define, extract, and then examine the behav-
ior of various particle subsets. In this paper I show some
examples of use of both the pre- and post-processor for a
standard ICOOL run.

1 INTRODUCTION

Given the exponential growth in computer processing
speed, memory, and storage capability, there are numer-
ous simulation codes in daily use in the accelerator physics
community that serve as the basic workhorses of modern
accelerator design. However, no matter how advanced and
intelligent the physics package within a particular code, it
can often be a frustrating challenge for the user to construct
the necessary input files to achieve the wanted simulation
parameters and/or, after a (hopefully) successful simulation
run, extract detailed physics results from the often volumi-
nous output files. The ICOOL simulation code[1], which
was written to model the front end of a possible neutrino
factory/muon collider facility, is one such code. ICOOL is
in heavy use by mutiple users at several different labora-
tories but also requires a great deal of effort to construct
proper input files. Moreover, there is no standard post-
processor tool.

Following some stimulating conversations with R.
Palmer(BNL) and G. Penn(UCB/LBNL) concerning the
obstacles associated with ICOOL input files, I wrote a
simple but very general, graphical pre-processor named

�Work supported by the U.S. Department of Energy under Contract
No. DE-AC03-76SF00098
yEmail: fawley@lbl.gov

“NIME” (for NIfty Macro Expander) to assist users in writ-
ing and maintaining ASCII-formatted input files by use
of macro definitions and expansions. Section 2 gives de-
tails concerning the features and implementation of NIME.
A second, more extensive, and continuing project was to
write an interactive post-processor for ICOOL output. For
various reasons (including multiplatform compatibility),
the ICOOL code itself produces no direct graphical out-
put but, instead, a number of ASCII-formatted output files.
Specifically, these include the so-called “FOR009.DAT”
file consisting of macroparticle “dumps” at discrete, user-
specified, locations in z and the “FOR002.DAT” file which,
among other things, archives details of macroparticle loss
and decay. Together, these files contain an essentially com-
plete and highly detailed record of the full phase space
evolution of the transported muon beam. Section 3 dis-
cusses the philosophy and structure of this interactive post-
processor which allows the user to define, extract, and then
examine the behavior of various particle subsets.

2 THE NIME PRE-PROCESSOR

Underlying NIME is a relatively simple Tcl/TK[3] script
which accepts a standard ASCII-formatted file as input and
then, after scanning this file for various macro definitions,
expands any macros in text to produce a final output file.
Tcl/TK was chosen (e.g. over Python) partially due to
author familiarity, partially due to Tcl’s text string orien-
tation (there is minuscule need for numerical evaluation),
and mainly due to the richness and simplicity of the TK
toolbox for GUI generation. The basic goal of NIME was
to allow a user to generate multiple blocks of text from
repeated use of a relatively few number of heavily com-
mented macros. This scheme is particularly applicable to
ICOOL input files because a large portion of the text lines
which determine the transport lattice are repeated over and
over again. Moreover, ICOOL input files permit essen-
tially no comment annotation, which can make them ex-
tremely difficult to understand months later after their orig-
inal generation. NIME, while ”targeted” toward the gener-
ation and maintenance of ICOOL input decks, will actually
work upon any ASCII file. Thus, NIME could prove use-
ful, to give an example, for generating a series of input files
for batch runs of other codes in which only a few lines or
variables might change from run to run.

The structure of a NIME input file is quite simple. Com-
ments may occur anywhere on a line and always begin with
an exclamation point, as in Fortran90. Macro definitions al-
ways begin on a new line and may be placed anywhere in
the file; i.e. usage of a particular macro may occur before
its definition, thus allowing the user to group macro defi-
nitions together at the end of the file if so desired. Macros

0-7803-7191-7/01/$10.00 ©2001 IEEE. 3063

Proceedings of the 2001 Particle Accelerator Conference, Chicago

have unique, user-chosen names which aids in readability.
Importantly, macros may also contain a number of internal
“variables” whose names are flagged by a preceding per-
cent symbol and whose values upon expansion may either
be a default value or one optionally set by the user on the
macro call line. Each macro may be called multiple times
but, at present, macros may not call other macros (i.e. no
nesting). A detailed manual, sample input file, and actual
Tclk/Tk script are freely available on the Muon Collider
Collaboration Web site[4]. The following short excerpt
from an actual NIME input file for ICOOL shows some
examples of macro definition and use:

\def block

SREGION

%length 1 %stepsize

1 0 %rmax(1.0)

NONE

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

%material(VAC)

CBLOCK

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

\enddef

\def rfcell

SREGION

%length 1 %stepsize

1 0. %rmax

ACCEL

2. %freq %grad %phase(0.) 0. 0. 0. 0. 0.

VAC

NONE

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

\enddef

!..the following is a 4-cell RF section

REPEAT

4 !--------- 4*201 MHz RF

\rfcell %length=0.3728 %stepsize=5.e-3 //

%rmax=0.65 %freq=201.25 %grad=6.4

\block %length=100.e-6 %stepsize=10.e-6 //

%rmax=0.25 %material=BE ! RF window

ENDR

! 2nd free drift space

\block %length=0.443 %stepsize=0.005 %rmax=0.5

While NIME or an equivalent is not exactly hard-core
rocket science, anyone who has ever tried to put together
a 50+ region ICOOL lattice from scratch should be able
to appreciate the possible time-savings and error avoidance
via macro definition and use.

3 AN INTERACTIVE GRAPHICAL
POST-PROCESSOR FOR ICOOL

As explained in the Introduction, ICOOL is somewhat
unusual amongst PIC codes in its use of particle dump files
as a primary output diagnostic. Moreover, since each par-
ticle and its decay products are given a unique identifier
within these dump files, multiple subsets of particles can be
defined (and possibly color-coded), and then either plotted

Figure 1: pr versus r projection at z = 0 of macroparticles
that survive to z = 35m (green dots) and those which are
lost (orange dots).

Figure 2: pr versus pz projection at z = 0 of particles that
survive to z = 35m (green dots) and those which are lost
(orange dots).

directly in scatterplots or have average properties binned
at any output location in the simulation. This then permits
their transport properties to be then examined at both up-
stream and downstream locations. Example subsets might
include those lost over particular intervals in z, those whose
radii (or energy or transverse momentum and so on...) fall
within given intervals at z = 0 (or any downstream z), etc.
Perhaps more interestingly, if one sets up a subset to be
those particles that end up within a particular 6-D phase
space volume at some downstream position, one can deter-
mine various upstream “envelope” properties as a function
of z and, perhaps, use this information to further optimize
the transport lattice. Since ICOOL at present does not in-
clude collective forces (e.g. space charge), each macropar-
ticle can be considered a test particle in 6D phase space.

The postprocessor (which presently exists without any

3064

Proceedings of the 2001 Particle Accelerator Conference, Chicago

Figure 3: pz versus time projection at z = 152m of
macroparticles color coded by pz value at the same z.

snappy or clever name) is written in Fortran90 and re-
lies upon NCAR graphics. I chose Fortran partly because
ICOOL itself is a Fortran code and thus most of its users
are Fortran proficient at some level. I chose F90 because
the richness of its array syntax (including pointers) and its
“TYPE” construct (similar to C structures) permits quite
high level objects (albeit with limited inheritance capabil-
ities when compared to C++) to be defined and used ef-
fectively. NCAR was a less certain choice and picked
mainly because (1) it is essentially free and available for
most UNIX/Linux platforms and (2) because I already
had an extensive library of graphics routines built upon
a NCAR/GKS foundation. Perhaps more importantly, I
structured the postprocessor to use a command line driven
interface (CLI) as its base default. While on one hand CLI’s
might be scoffed at as a fossil relic of the 1960’s, they can
be adapted both easily and extremely rapidly (with mini-
mal changes to the underlying coding) to be driven by quite
slick Expect[5]/TK GUI’s with lots of fancy buttons, slid-
ers, drop-down menus, etc.

As an example of the postprocessor’s capabilities, I con-
sider one of the relatively recent “non-distorting phase ro-
tation” lattices [6] created by R. Palmer of BNL. This par-
ticular lattice [“STEP8” entitled nd phase rotation with
all matches graded (2.08 ndm8)] begins at the proton tar-
get, followed by two induction accelerators and liquid H 2

minicool absorber sections for phase rotation, and finishes
with � 200m of RF accelerator cells and cooling sec-
tions. Fig. 1 shows a post-processor produced scatterplot
of the (pr ; r) transverse phase space projection at z = 0
color-coded by whether the particles survive to z = 35m
or not. As is obvious, very few particles above an ini-
tial pr � 0:21GeV/c survive and there is some additional
loss at lower values of pr for r � 60mm. The equivalent
(pr ; pz) projection (Fig. 2) shows that this cutoff is essen-
tially pz (and thus energy) independent.

Figures 3 and 4 show the possible value of color coding

Figure 4: pz versus time projection at z = 364m of surviv-
ing particles, with the same color coding as Fig. 3.b

particle subsets. The longitudinal phase space of in Fig. 3
is that predicted by ICOOL just beyond the first induction
linac, which has succeeded in flattening out the pz�t curve
for pz values below � 0:10GeV/c. The color coding cor-
responds to pz values evaluated at z = 152m with equal
macroparticle numbers per color group. Figure 4 shows
the equivalent for the surviving particles at z = 364m, just
beyond the second and final induction linac, with the same
individual macroparticle color coding. One sees that nearly
all macroparticles whose original pz at z = 152m fell be-
low � 0:34GeV/c have been rotated by z = 364m to a
relatively narrow band in pz.

Quantitatively, macroparticle scatterplots become less
than optimum when either the macroparticle number is
large and/or many binning intervals(=# colors) are needed.
An alternative in the postprocessor allows arbitrarily large
bin number over one variable at a given z followed by
historgram-likeplots of some other property (averaged over
the macroparticles in each bin) evaluated at one or more po-
sitions in z.

I am pleased to acknowledge useful discussions with G.
Penn, A. Sessler, J. Wurtele, R. Fernow, and J. Gallardo.
Computational resources at the DOE NERSC were utilized
in this study.

4 REFERENCES

[1] Primary author R. Fernow, BNL; see
http://pubweb.bnl.gov/people/fernow/icool/readme.htm

[2] A. M. Sessler, “Neutrino Factories: The Facility”,
http://www-mucool.fnal.gov/mcnotes/muc0155.pdf

[3] http://dev.scriptics.com/scripting/

[4] http://www.cap.bnl.gov/mumu/software/nime.html

[5] D. Libes, Exploring Expect, O’Reilly, Sebastopol, CA
(1995).

[6] http://www-mucool.fnal.gov/mcnotes/muc0114.ps

3065

Proceedings of the 2001 Particle Accelerator Conference, Chicago

