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Abstract 

A sub-three-dimensional particle-in-cell (sub-3D PIC) 
code to simulate the dynamics of high-current charged 
particle beams is introduced.  Important features of this 
new formulation are the reduced computational times and 
memory demands even when modeling the evolution of a 
general three-dimensional (3D) particle ensemble. The 
limitations due to the approximate self-consistency of the 
model are discussed. 

1 INTRODUCTION 
In general, three-dimensional (3D) particle-in-cell (PIC) 

simulations of high-current charged particle beams are 
time consuming and have large memory demands. E.G., 
typically the number of macro-particles is Np∝ 106 with 
3D spatial grid dimensions of Nx,y,z∝ 102. These 
magnitudes are necessary primarily to reduce 
computational errors in the self-electric field calculation 
and to accurately describe beam line conducting 
boundaries. 

For arbitrary beam distributions and boundaries, the 
charge densities and fields are evaluated on 3D grids 
during step-by-step integration of the trajectories [1]. 
Computational economy may be achieved by upgrading 
structural elements such as charge density redistribution 
block, space charge field solvers, trajectory integrators, 
and  the calculational flow with  parallel processing [2].   

Another way to reduce 3D PIC computational demands 
is to develop a new formulation. A sub-3D PIC code, 
introduced in [3] provides an alternative to the general 3D 
PIC formulation when beam distributions and conducting 
boundaries satisfy certain assumptions [4,5]. This 
formulation allows the simulation of 3D beam dynamics 
in times comparable to that for two-dimensional (2D) PIC 
models.  Though the self-consistency of the sub-3D model 
is approximate, preliminary studies have shown that it 
provides an adequate quantitative description for many 
beam configurations and boundary geometries [6,7]. 

2 GENERAL  SUB-3D PIC SCHEME 
The sub-3D PIC code procedure has the same structural 

blocks as other conventional PIC algorithms: (i) 
generation of beam initial distribution, (ii) integration of 
macro-particle trajectories, (iii) charge density re-
distribution, and (iv) self-electric field solvers. Steps (ii)-
(iv) are performed repeatedly during the step-by-step 
calculations.  Given below is an overview of the sub-3D 
PIC code with an emphasis on its new features. 
__________________ 
*This work was supported by the U.S. Department of Energy under 
Contract No. DE-FG02-99ER41118 

 

2.1 Initial distribution for 3D beam 
The 3D beam initial distribution algorithm is similar to 

those usually used for 3D PIC codes with the phase 
distribution  (x, x′, y, y′, z, z′ ) generated to match the 
desirable rms phase volume, the rms- and maximal sizes 
of the beam. 

2.2 Integrator of macro-particles trajectories 
A 3D trajectories integrator for the case ∆p/p=0 
The equations of motion of a charged particle with 

coordinates x=(x,y,z) may be derived from the 
Hamiltonian retaining the first or higher-order 
transmission characteristics of the beam line. In 
normalized form, the equations of motion can be written 
as: 

),,( sxxFx ′=′′      (1) 

where s denotes  the distance along the particle trajectory, 
scext FFF +=  are the external focusing and the space 

charge forces, and x′  = dx/ds.  Note, the space charge 
force, Fsc, is from the ensemble of Np beam particles. 

Integration schemes such as leapfrog retain accuracy to 
2nd order. (For details see Chapter 4 of [1]).  The memory 
requirements are modest, but small integration steps are 
necessary to reduce round-off error, making them 
computationally slow.  A faster higher-order integrator for 
Eq. (1) is obtained by a modification of the balance 
method [8]. 

Omitting for sake of brevity the indices “x” in F and 

noting that ∫=′−′
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after simple algebra [2]: 
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where  xk=x(sk), xk+1=x(sk+1), xk-1=x(sk-1),  Hk=hk+1/hk  and 
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The equations are similar for the y and z coordinates. 
Approximations for the integrals J1,2 , expressed via F(sk), 
F(sk-1)  and F(sk+1), are then substituted into (2), to 
achieve the integration scheme. An approximation of Eq. 
(2) may be written as: 
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with the coefficients: 
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where 2/)( 1++= kk hh� . The coefficients Λi are found 

via evaluation of the integrals J1,2 from (3). The overall 
accuracy of the integration as implemented is ψ=O(h4).  
Fig. 1 illustrates the principle. 

This approach provides a straightforward way to obtain 
other numerical multi-step integrators of higher-order.  By 
increasing the number of coordinates  xk  and functions Fk  
in the computational scheme, the accuracy can be 
increased.  In this discussion, xk-1, xk, xk+1 and Fk-1, Fk, 
Fk+1 are used. The computational algorithm (4) is implicit, 
because the unknown coordinates xk+1 are included in Fk+1  
on the right-hand side of Eq. (4).  Therefore, at each step 
of integration the approximation xk+1 is found iteratively. 

For cases where a fringe field description is used for 
external focusing, F will be smooth (trajectories x and 
space charge forces are always smooth) and the integrator 
(4) guarantees accuracy ψ to 4th order. 

When a hard edge model is used for the external 
focusing, there is a discontinuity in the derivatives of F, 
but the algorithm maintains the same accuracy [2] in 
calculations of J1,2. We introduce an external focusing 

function ))(),(),(()( szsysxGsF ext
x ϕ±= , where )(sϕ  is 

smooth, but the focusing strength has a cutoff at the point 

sk: kssfor   )()( <= − sGsF ext
x ϕ  and )()( sGsF ext

x ϕ+=  

and kss ≥ .  In Fig. 1 a trajectory is plotted for a particle 

that passes a hard edge focusing element with strength 
±G .  Since the function )(sϕ  is smooth, the integrals J1,2 

can be evaluated with the same accuracy ψ=O(h4), and the  
integrator accommodates these functions by 
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with the coefficients in (5), modified to be: 
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This integration technique was tested by 2D PIC 
simulations giving the same results as those from 
analytical models (KV-beams) and other 2D PIC codes 
employing leapfrog trajectory integrators.  A merit of the 
scheme (4)-(5), (4)′-(5)′ is the possibility to have a much 
larger integration step in comparison with e.g. leapfrog, 

significantly reducing computational times.  A drawback 
of the method (4) is the need to store arrays {xi}, {Fi}, for 
indices i=k-1,k,k+1. 

A 3D trajectories integrator for the case ∆p/p≠0  
If the functions F are smooth then F′  is continuous, and 

the inclusion of ∆p/p≠0 requires only minor modifications 
of the algorithm (4) taking into account the different 

advances n
kh  of each particle ( pNn ,,1�= ).  

Complications arise for the hard edge external focusing 
model or relatively short fringing fields.  For beams with 
momentum spread, particles will pass edges of the 
external focusing element at different times.  To make the 
integration valid for particles of different velocities a 
modification is required. 
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Figure 1: Particle trajectories integrator (schematic). 
 

For example, when a reference particle with coordinate 
Sk arrives at the entrance edge of a focusing element, a 

faster particle will be inside at coordinate 1
ˆ

+kS  while a 

slower particle will be at coordinate kŜ  outside the 

focusing element.  See Fig. 1. Therefore the integrals J1,2 : 
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gives the modified coefficients Λi. 

2.3 Slice algorithms and sub-3D field solver 
A numerical technique to calculate the potential of a 

beam bunch by superposition of the potentials of thin 
charged disks (slices) was introduced in [4-6].  See Fig. 2. 
The discrete representation of the beam allows the 
computation of potentials of arbitrary bunch profiles to be 
fast and accurate.  One of the important applications of 
the slice algorithm is the sub-3D Poisson Solver, which 
finds the solution of the 3D Poisson equation as a 
sequence of 2D solutions of the 2D equation. 

The space charge potential u(x) from the charge density 
ρ(x), distributed  in the 3D region ℜ , may be found from 
the standard 3D Poisson equation: 

 

)()(

),,(       ),( 4)(

0 xx

xxx

Uu

zyxu

=
ℜ∈=−=∆

∂ℜ

πρ
  (5) 

3073

Proceedings of the 2001 Particle Accelerator Conference, Chicago



For electrostatic cases, we assume U0≡0 on the 
boundary ∂ℜ . Splitting the Laplace operator as 

22
2 /4 zuu ∂∂−−=∆ πρ  where the notations 
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for Cartesian and cylindrical coordinates correspondingly, 
after introducing the “corrected density” 

πρρ 4//),,( 22 zuzyxcorr ∂∂+= , we re-write the original 

Poisson equation (1) as: 
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This reduces the original 3D problem (5) to a series of 
2D problems (6).  The benefit of such a representation 
comes a reduction in the number of 2D problems from the 
hundreds necessary for standard field solvers to ~5-10. 
The essence of this sub-3D Poisson Solver is that the 

driving term 22 / zu ∂∂ , is derived from: 

zEzu z ∂−∂=∂∂ // 22 , with the fields zuEz ∂−∂= /  

borrowed from the slice algorithm technique. (See the 
references [5,6] for details.)  The corrected density is: 
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The approximate self-consistency of such a technique is 
appropriate when the chamber boundaries have a simple 
geometry and when the beam is centered and has elliptical 
symmetry. The increased computational speed of the 
described sub-3D filed solver is due to the reduced spatial 
grid dimensions and fewer macro-particles (see [3]). 
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Figure 2: The illustration of the slice algorithms (left) and 
the sub-3D field solver (right). See [3] for details. 
 

In the implementation of (6)-(7), the 2D charge density, 

D2ρ , employs the standard cloud-in-cell (CIC) technique 

and the standard 2D Poisson Solver [1].  

3 DISCUSSION AND CONCLUSIONS 
An initial version of the sub-3D PIC code with 

computational elements as described has been completed.  
The computational components were verified separately 
and compared to results from an existing 2D PIC code.  
To facilitate further testing and to provide more general 
simulation capability where required, the computer code 
provides both the sub-3D as well as fully 3D algorithms.  
The sub-3D will provide computational speed within 
simple boundaries, whereas the 3D will accommodate 
more general situations at the expense of speed.  Because 
both the sub-3D and 3D routines share common data and 
execute the same procedures, the program size is not 
increased significantly.  The approaches differ only in the 
method of the charge density and space charge field 
calculations. 

The initial version of the sub-3D code uses a simplified 
model of the longitudinal field. Due to the relative lack of 
sensitivity of the longitudinal electric fields to the details 
of transverse charge density distribution, the use of 
template potentials for a specific slice charge density 
distribution does not cause significant errors [6,7].  As a 
consequence, only a moderate amount of pre-calculated 
data is required.  In the future, a more general approach 
will be implemented. 
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