
LIBXSIF, A STANDALONE LIBRARY FOR PARSING THE STANDARD
INPUT FORMAT

P. Tenenbaum, SLAC∗

Abstract

The Standard Input Format for the description of accel-
erator beamlines has achieved limited acceptance due to
the complexity of the parser required. We describe a stan-
dalone library of Fortran-90 routines which can be used
to parse a superset of the Standard Input format in use
at SLAC, named Extended Standard Input Format (XSIF).
This library provides authors of new simultion codes with
a simple means of adding XSIF compatibility to their pro-
grams, and also permits users to add their own features
to the parser with relative ease. As examples we describe
the manner in which the linear accelerator code LIAR was
modified to use LIBXSIF, and changes made to DIMAD
to switch from its internal Standard Input Format parser to
use of the external XSIF parser. URL’s for the source code,
documentation, and ready-to-use libraries are provided.

1 INTRODUCTION

The Standard Input Format (SIF) for accelerator beam-
line description was created in 1984 to respond to the need
for a more user-friendly lingua franca for the accelerator
world [1]. SIF had several notable improvements over pre-
vious languages (such as TRANSPORT format [2]):

• SIF permitted highly repetitive elements, from mag-
nets to beamline symmetry units, to be defined once
and reused repeatedly

• SIF permitted the beam optics to be defined inde-
pendently of the beam energy, by declaring magnet
strengths in quantities normalized to the energy (for
example, defining the strength of a bend magnet by
its total bend angle rather than its integrated magnetic
field)

• SIF permitted many beamlines to be defined in a sin-
gle file, and allowed the user to select which one was
to be simulated

• SIF permitted the user to define named parameters,
and allowed beamline element parameters to be de-
fined in terms of arithmetic relationships between con-
stants, named parameters, and parameters of other el-
ements

• SIF permitted decks to be spread over multiple files,
so that the actual beamline description and commands
for the simulation program could be kept separate;
this in turn permitted a single deck to be used without

∗Work supported by the U.S. Department of Energy, Contract DE-
AC03-76SF00515.

modification by many users, each of whom performed
different simulations with different command files

• SIF permitted a more relaxed and intuitive syntax than
the existing beamline description languages.

The standard input format was immediately adopted by
the CERN simulation program MAD (Methodical Accel-
erator Design) [3], and was later added to the programs
DIMAD [4], TRANSPORT [5], TURTLE [6], and COM-
FORT [7]. Nonetheless, the widespread adoption of SIF
has been impeded by the absence of a single, standalone
version of the deck parser that can easily be added to any
existing simulation program. In addition, the absence of
linear accelerator elements in SIF has delayed its usage in
programs in which such elements are critical, such as LIAR
[8].

2 LIBXSIF

LIBXSIF is a standalone library for the parsing of Ex-
tended Standard Input Format (XSIF) decks. Software en-
gineers need add only a few calls to routines in this library
to allow their programs to read and manage decks in the
XSIF language. The standard is “extended” from SIF in
the following ways:

• Linear accelerator elements, using the DIMAD key-
word LCAVITY, are permitted

• Elements have an APERTURE attribute

• A handful of non-SIF elements, such as GKICKs, are
included.

LIBXSIF is written in Fortran-90, and the latest version
(v1.2) is available for Solaris, NT, and VMS-Alpha plat-
forms; a Linux-i86 version will be released later this year.
The present version of LIAR (v2.3) uses LIBXSIF, as does
the present version of NLC-DIMAD (v2.8). The use of a
common library to perform all XSIF parsing will greatly
ease maintenance and expansion/extension of the code.

2.1 Calling LIBXSIF Routines from Existing
Programs

LIBXSIF contains 76 object files, but only a few of these
need to be called by the main program. In addition to
the executables, LIBXSIF stores global data in Fortran-90
modules, which are accessed by USE statements in sub-
routines that require access to the data. The modules are
XSIF SIZE PARS (global parameters for setting the sizes
of statically-declared arrays), XSIF INOUT (data related
to input and output), XSIF ELEM PARS (fixed parameters

0-7803-7191-7/01/$10.00 ©2001 IEEE. 3093

Proceedings of the 2001 Particle Accelerator Conference, Chicago

related to element defintions, such as dictionary arrays for
each element type), XSIF ELEMENTS (parsed element
data), XSIF CONSTANTS, XSIF INTERFACES (explicit
interfaces for a handful of procedures).

Historically, programmers have been of two minds on
the desired “look and feel” of Standard Input Format
parsers in their simulation programs. Some programs, such
as MAD and DIMAD, have incorporated the parser into
their command input stream, so that beamline definitions
and simulation commands co-exist in a single file. Other
programs, such as LIAR, keep the beamline and command
file separate: a command in the command input stream di-
rects the command parser to open, parse, and close a sep-
arate file full of beamline definitions. In addition, many
programs add capabilities over and above simple beamline
parsing to their Standard Input parsers (DIMAD is a prime
example of this). We have configured LIBXSIF to accomo-
date all of these preferences.

XSIF IO SETUP This is the top-level routine for ap-
plications in which beamline information is not to be stored
in the command input stream. XSIF IO SETUP takes ar-
guments which indicate the filenames of the deck file, the
XSIF output stream, and the XSIF error stream, as well as
logical i/o unit numbers for each. XSIF IO SETUP will
open each of these files with the appropriate status, and re-
turn a good status if all file-open operations were success-
ful, or an error otherwise. XSIF IO SETUP will also call
RDINIT, CLEAR, and INTRAC (see below).

RDINIT Subroutine RDINIT initializes various i/o
variables and writes the LIBXSIF header, with version in-
formation, to the screen, the standard output, and the error
stream.

CLEAR Initializes variables related to the parser (for
example, number of elements parsed so far).

INTRAC A dummy function that tells LIBXSIF that
non-interactive operation (the only supported mode at this
time) is selected.

XSIF CMD LOOP This is the master command loop
which reads new lines from the deck file and takes appro-
priate actions. XSIF CMD LOOP will continue to parse
the requested file, and/or any files which are OPENed and
CALLed from the requested one, until one of the follow-
ing: a fatal read occurs, in which case all routines in the
call chain will abort execution as quickly as possible; a
function or subroutine in the call chain requests a halt to
parsing (for example, if the STOP command is encoun-
tered), in which case all routines in the calling chain will
complete execution normally; or exhaustion of all data in
the file(s) of interest. In all cases, XSIF CMD LOOP will
ultimately return control to its calling routine (i.e., it will
not abort execution of the program), with a status or error
message.

One of the arguments of XSIF CMD LOOP is an op-
tional function name. If a function name is provided,
XSIF CMD LOOP will permit that function to attempt to
manage the most recent line of input before the standard
command loop; in this way, users can add their own exten-
sions to LIBXSIF without ever touching the existing code-
base.

XSIF IO CLOSE Closes files opened by
XSIF IO SETUP.

XUSE2 Permits the calling routine to specify the name
of a beamline to be expanded for simulation. This is identi-
cal to specifying a beamline with a USE statement in the
deck, but it permits the calling program to pass a name
rather than relying on the deck file to provide it.

3 EXAMPLES

Two programs which use LIBXSIF to parse beamlines
are LIAR and NLC-DIMAD version 2.8. LIAR’s “look
and feel” dictate a separate beamline and command stream,
while DIMAD’s traditional interface combines the two.

3.1 LIAR

The LIAR command READ XSIF specifies a beamline
file for parsing:
read xsif,
file= ‘‘main linac.xsif’’,
line = ‘‘linac’’
indicates that the file “main linac.xsif” is to be opened
and parsed, and that a beamline named “linac” is
to be expanded for simulation purposes at the end
of parsing. The subroutine READ XSIF in LIAR
calls XSIF IO SETUP, which opens the desired file; it
then calls XSIF CMD LOOP to perform parsing and
XSIF IO CLOSE to close all files that were opened. Fi-
nally, XUSE2 is called with “linac” as an argument; this
causes the expansion of the requested beamline in a man-
ner identical with a use, linac statement at the end of
the deck file.

3.2 DIMAD

The traditional DIMAD “look and feel” incorporates
beamline information and simulation commands into a
single input stream; in addition, DIMAD’s version of
the Standard Input parser has several commands, in-
cluding DIMAT (which signals the beginning of sim-
ulation) which are not part of traditional Standard In-
put. To preserve these features, DIMAD does not use
XSIF IO SETUP (which would automatically open a file
separate from the command stream for beamline informa-
tion), and the subroutines RDINIT, CLEAR, and INTRAC
are called by DIMAD itself. The extra commands in DI-
MAD’s version of the parser are handled in subroutine DI-

3094

Proceedings of the 2001 Particle Accelerator Conference, Chicago

MAD XSIF EXTRA, which is passed as an argument to
XSIF CMD LOOP.

4 WHERE TO GET IT

LIBXSIF was primarily constructed for use by the
Next Linear Collider project at SLAC, but with some
consideration of its potential utility to other accelerator
designers. All of the potentially-useful bits and pieces
(binaries, source, documentation, and LIAR and DIMAD
examples) is freely available over the World Wide Web.
The parent URL for all information is:
http://www.slac.stanford.edu/accel/nlc/local/
AccelPhysics/codes.

4.1 Source Code

Folder xsif/src contains up-to-date source code for
LIBXSIF, including a TAR of the entire source.

4.2 Binaries

At the present time, binary versions of LIBXSIF
are available via WWW for Solaris (in xsif/bin) and
for Windows running on Intel compatible CPUs (in
xsif/binnt). A version for IBM’s AIX operating system
is available, but this version is not up-to-date due to the
elimination of AIX support at SLAC. While LIBXSIF will
compile without errors on VMS/Alpha as well, web access
to this version is not available at this time. A version for
Linux will be made available in the second half of 2001.

Note that, since LIBXSIF is a Fortran-90 library, it is
necessary to acquire the “module” files (binary versions of
INCLUDE files) in order to link against LIBXSIF.

4.3 Documentation

A detailed guide to LIBXSIF is available in xsif/doc,
in PostScript or Portable Document Format.

4.4 Examples

Sometimes the best documentation is an example. The
relevant portions of LIAR’s connection to LIBXSIF can be
seen in the file read xsif.f, in the liar/src folder. DI-
MAD’s connections to LIBXSIF are in files madin new.f
and dimatd.f, in dimad/source/v2.8. Note that these
files also show examples of how to strip beamline informa-
tion out of LIBXSIF’s structures.

5 REFERENCES

[1] D.C. Carey and F.C. Iselin, “A Standard Input Language for
Particle Beam and Accelerator Computer Programs,” Pro-
ceedings of the 1984 Summer Study on the Design and Uti-
lization of the Superconducting Super Collider, Snowmass,
Colorado (1984).

[2] K.L. Brown et al, “TRANSPORT: A Computer Program
for Designing Charged Particle Beam Transport Systems,”
SLAC-Report-91 Rev. 2 (1977).

[3] H. Grote, “The MAD Program User’s Reference Manual,”
CERN/SL/90-13 (AP) Rev. 5 (1996). See also CERN-LEP-
TH notes 83-30, 85-15, 85-38, and 87-33.

[4] R.V. Servranckx et al, “User’s Guide to the Program DI-
MAD,” SLAC-Report-285 (1990).

[5] D.C. Carey et al, “Third-Order TRANSPORT with MAD In-
put,” SLAC-Report-530 (1998).

[6] D.C. Carey et al, “TURTLE with MAD Input,” SLAC-
Report-544 (1999).

[7] C. Hawkes and M.J. Lee, “Recent Upgrading of the Modeling
Program COMFORT,” SLAC-CN-342 (1986).

[8] R. Assmann et al, “LIAR: A Computer Program for the Mod-
eling and Simulation of High Performance Linacs,” SLAC-
AP-103 (1997).

3095

Proceedings of the 2001 Particle Accelerator Conference, Chicago

