
VORPAL - A MULTIDIMENSIONAL CODE FOR SIMULATING
ADVANCED ACCELERATION CONCEPTS

C. Nieter, J.R. Cary, University of Colorado at Boulder, Boulder, CO 80309, USA
Abstract

VORPAL is a new simulation code under development
for simulation of advanced acceleration concepts such as
Laser Wake Field Acceleration. VORPAL makes use of
object oriented programming techniques to achieve greater
flexibility and extensibility. For example, with VORPAL,
one can set the physical dimension of the simulation at
run time rather than compile time. This allows the user to
simulate an advanced acceleration scenario rapidly in 2D
to look for qualitative results, then move to 3D with the
same code and nearly the same input file for more detailed
simulations. The VORPAL framework can support multi-
ple particle models (fluid, PIC), but at present only fluid
representations are in place. VORPAL is designed to run
on most flavors of UNIX and will run on both serial and
parallel machines, including Beowulf clusters. VORPAL
stores data in HDF5 files, allowing for subsequent visual-
ization by a number of packages, including RSI’s IDL and
OpenDX. VORPAL will be applied to problems of laser-
plasma interactions in the near future.

1 DIMENSION FREE

VORPAL is a dimension free code. What we mean by
this is that the same code base will support simulations of
one, two, and three dimensional systems. This is done by
templating the code over dimension. The simultaneous im-
plementation of of arbitrary dimensional prevents us from
using nested loops to perform the updates.

We deal with the issue of indexing in multiple dimen-
sions by using a generalization of an iterator. We define
a class called VpFieldIter, which holds the index of a 1D
array corresponding to the multiple indices of a multi-
dimensional array. This class contains a bump method,
which moves the index a given number of cells in a given
direction. These iterators hold a pointer to a specific field
whose data they can access for either reading or writing.

A computational method is then implemented by cre-
ating collections of these iterators that represent some fi-
nite differencing of an equation of motion. For example,
suppose that we wanted to solve the following differential
equation,

∂Φ
∂t

= α∇2Φ, (1)

by finite differencing. The change in phi at the point (i, j)
over one time step becomes

∆Φi,j =
α∆t
∆x2 (Φi+1,j + Φi−1,j + Φi,j+1 + Φi,j−1 − 4Φi,j).

(2)

A class which consists of iterators bumped to the correct
location for all the terms in the equation including the left-
hand side is constructed. This class has update method
which evaluates the equation and a bump method which
bumps all the iterators for the equation.

To create generic code for all dimensions, we create
“walker” classes that use recursion and template special-
ization to walk the iterator collection objects through the
grid. These classes are templated over dimension and they
have an update method which recursively calls the update
method for the lower dimension. We then specialize the
first dimension to actually call the update method of the
collection object.

An advantage of this methodology is that one has a sin-
gle code base for all dimensionalities and all precisions.
This reduces maintenance requirements. By using template
specialization we can inline away all of the functions, so we
do not have the normal loss of performance that accompa-
nies recursion.

2 MULTIPLE MODELS

The typical plasma simulation code involves the self-
consistent integration of a model for the charged particles
along with a model for the electromagnetic field. Histor-
ically, codes have been written specifically to the model.
One speaks of fluid codes, particle in cell codes, fully elec-
tromagnetic codes, codes that incorporate a reduced model
for the electromagnetic fields, such as the electrostatic ap-
proximation, etc. VORPAL is designed to provide the ca-
pacity to incorporate different models for both the particles
and the electromagnetic fields. The object oriented ideas of
inheritance and polymorphism make this possible.

An example application is that of the electromagnetic
field. We have a base class in VORPAL called VpEmField.
This class defines the interface and hence all the behaviors
one would expect from a electromagnetic field, the abil-
ity to give the electric or magnetic field at any grid point
and the ability to update itself given a charge and current
distribution. Any other component of the simulation that
needs information from electromagnetic field, for example
updating the particles, does not need to know the details
of how the electromagnetic field is updated. The particles
would communicate with the interface for the electromag-
netic field defined in VpEmField, allowing us to put in dif-
ferent models for the electromagnetic field without having
to change the code for particles.

At present we have implemented and tested a finite dif-
ferencing method for the electromagnetic fields based on
the Yee Mesh. The electric and magnetic fields are offset
from the nodal point of a cell on a Yee Mesh. The electric

0-7803-7191-7/01/$10.00 ©2001 IEEE. 3105

Proceedings of the 2001 Particle Accelerator Conference, Chicago

field lives on the edges of the cells with the direction of the
field corresponding to the vector running along the edge.
The magnetic fields live on the faces of the cells, with the
direction of the field corresponding to the perpendicular to
the face. By arranging the fields in the cell in this manner,
the finite differencing of Maxwell’s equations is second or-
der. The Yee Mesh solver has been implemented and tested
in VORPAL.

A cold relativistic fluid model for the plasma particles
has been implemented. Cold fluid means that we assume
the pressure term does play an important role in the dy-
namics. The fluid density obeys the continuity equation:

∂n

∂t
+ ∇ · nv = 0. (3)

The relativistic fluid momentum, p obeys the Lorentz force
equation.

∂p
∂t

+ v · ∇p = q(E +
v
c
× B). (4)

The equation that governs the density is of a flux con-
servative form. The equation can be understood from a nu-
merical point of view as the conservation of flux entering or
leaving a cell. To update the density within a cell one just
determines the fluxes passing through each cell boundary
and then add or remove that from the density in the cell.

This gives us a conservative algorithm, however since
we are interpolating the density to calculate the flux, there
is a possibility of creating negative densities. This nega-
tive density can lead to an instablity. We are working on a
method to correct the flux such that flow out of cell can not
be greater than the density in cell for any one time step.

Combining the density equation with the momentum
equation allows us to cast the momentum update in a flux
conservative form as well. However, this does not allow
for regions of zero density, as in conservative form one
finds the local velocity by dividing out the density - a nu-
merically ill defined procedure. The fluid momentum in a
region of zero density still has meaning, it defines the tra-
jectories of test particles within that region. Solving equa-
tion 4 directly by doing an advective update rather than a
conservative one yields an algorithm that works when one
has regions of zero density.

3 LOAD BALANCING AND DOMAIN
DECOMPOSITION

There are two reasons for load balancing. The first is that
different domains may have different amounts of computa-
tion. For example, in the propagation of a beam through
an accelerating structure, the advance of the particles (the
most computationally intensive part of the problem) takes
place only where there are particles. The second reason is
that different domains may be computed on processors of
different capability. This is especially true of Beowolf clus-
ters, as they become upgraded over time. If new processors

are added to a Beowolf cluster over time, Moore’s law tells
that they will be able to carry out computations in less time.

The usual 2D domain decomposition of a 3D cubic re-
gion is shown in Fig. 1. Such a decomposition cannot
achieve complete load balancing, as is needed is needed
when there are a larger number of particles in one domain,
as happens in beam simulations. The reason complete load
balancing is not obtainable is that there are four domains,
hence three conditions for equality of the computing time
used by each domain. However, there are only two mov-
able planes, thus insufficient freedom for satisfying three
conditions.

Figure 1: Standard 2D decomposition of a 3D cubic region

We do the domain decomposition as illustrated in Fig. 2.
The decomposition planes perpendicular to one direction
cut the entire region, but in the second direction they break
at each of the planes of the first direction. Having three
movable planes to satisfy three conditions makes load bal-
ancing possible.

The implementation of this decomposition is more dif-
ficult than that of the usual decomposition. We have pro-
totyped a methodology for doing so. Using set theoreti-
cal ideas, we have defined the concept of a VpGridRgn,
which is a logically cubical (bounded by six planes - or-
thogonal parallelepiped). Each domain is described by two
VpGridRgn’s, its physical region, physRgn, plus a layer of
surrounding guard cells, xtndRgn. The physRgn is the re-
gion over which the domain must solve the dynamics. To
do this it mush know the field at beginning of the time step
in its xtndRgn. Thus the required communication is that
each domain the values in its xtndRgn from the proces-
sors that have calculated those cells. We can see that all
that needs to be done is to figure out the intersection of the
domains xtndRgn with a neighboring domain’s physRgn.

3106

Proceedings of the 2001 Particle Accelerator Conference, Chicago

Figure 2: Fully general 2D decomposition of a 3D cubic
region

This intersection is itself a VpGridRgn and it contains the
cells which the neighboring domain needs to pass to the
domain in question. In Fig. 3 the black rectangles are the
physRgn’s of the various domains and the red rectangle is
the xtndRgn of domain 3. The blue rectangle is the inter-
section of domain 3’s xtndRgn with domain 2’s physRgn.
This is the region that domain 2 must pass to domain 3.

1

2

3

Figure 3: The intersection of an extened region with a
neighboring domain’s physical region

4 VISUALIZATION

The visualization in VORPAL is by post-processing the
output files, which are written in the self-describing HDF5
format. The older HDF4 format can be read directly by Re-
search Systems’ Interactive Data Language and OpenDX,
a open source visualization package based on IBM’s Data
Explorer. There is a command line utility that will con-
vert HDF4 files into HDF5 which comes with HDF5. The
next release of IDL will support HDF5 directly. Both IDL
and OpenDX allow us to write visualization scripts and
more elaborate GUI driven applications. We have found
that OpenDX is easier to use since it has a very intuitive
visual programming environment. In Fig. 4 we show the
results of a 3D parallel simulation of an electromagnetic
wave launched into a region of vacuum using VORPAL.

Figure 4: Transverse component of a electromagnetic wave
in vacuum

5 CONCLUSIONS

We have produced a parallel plasma physics code us-
ing object oriented programming techniques and other ad-
vanced features of C++ that allows for greater flexibility
compared to current codes. Multiple representations of
the both the particles and electromagnetic fields are pos-
sible, and we have implemented a Yee mesh finite differ-
encing for the electromagnetic fields and a fluid model for
the particles which we will use to study problems in laser-
plasma interactions. Our code runs in any dimension and
with selectable precision without loss of performance. We
have the ability to support load balancing using a set-theory
based message passing.

3107

Proceedings of the 2001 Particle Accelerator Conference, Chicago

