MEASUREMENTS OF THE BETATRON FUNCTIONS IN RHIC

D. Trbojevic, L. Ahrens, M. Bai, V. Ptitsyn, T. Satogata, and J. van Zeijts * BNL, Upton, NY 11973, USA

Abstract

The Relativistic Heavy Ion Collider (RHIC) provides collisions of the fully stripped gold ions for four experiments. This report shows results from measurements of the betatron functions within the Interaction Regions (IR) as well as in the arcs in both "blue" and "yellow" rings. A single quadrupole excitation or the beam position monitors' RMS. values at injection are used to obtain the betatron amplitude function.

1 INTRODUCTION

RHIC consists of two identical three fold symmetric rings which provided collisions during the run in the summer of 2000 of the fully stripped gold ions. During this commissioning run the maximum energy was 70 GeV/nucleon. At two interaction regions (IRs), one at 8 o'clock where is the large detector "PHENIX" located, and at 2 o'clock where the smaller experiment "BRAMS" resides collisions were established at points with $\beta^* \sim 3m$. At the 6 and 10 o'clock the minimum of the beta function was $\beta^* \sim 8m$. The RHIC lattice is made of six arcs with twelve standard $\sim 90^{\circ}$ FODO cells between the IRs. The IRs are made of almost the same FODO cells with missing dipoles, to allow for zero dispersion at collision points. The IR tunable FODO cells also allow matching of the betatron functions between the high focusing triplets and the arc FODO cells. The expected values of the lattice functions in RHIC are presented in Table 1.

Table 1: Maximum Twiss Functions in RHIC at the IR

Region	β_x	β_y	β_{min}	$D_x at IP$
IR 8 and 2	424.94	413.76	8.50	-0.0001
IR 6 and 10	154.47	171.08	3.19	0.0048
Arcs	47	48	10.92	1.89

The maximum values of the betatron functions are within the strong focusing triplet quadrupoles around the two low β IRs while the other values are presented within the arc FODO cells. The beam positions around the ring were measured with a total of 334 beam position monitors (BPMs) per one ring. Almost half of the BPMs (total of 160) are dual plane monitors. Each BPM is capable of measuring and recording the turn by turn positions of the center of the beams. In this report a measurement of the β_x , β_y , and D_x will be presented and compared with the design.

2 AMPLITUDE FUNCTIONS β_X, β_Y MEASUREMENTS

The amplitude betatron function measurements during the RHIC commissioning were obtained first from the injection oscillations taking the rms value. A measurement in the horizontal plane is presented in Fig. 1 together with the predicted values, while the vertical plane measurements is presented in Fig. 2.

Figure 1: Measured -o- and predicted β_x betatron function in the horizontal plane.

Figure 2: Measured -o- and predicted β_y betatron function in the vertical plane.

^{*} Work performed under auspices of the U.S. Department of Energy

3 DISPERSIONFUNCTION MEASUREMENTS

At the beginning of the RHIC commissioning there was a clear disagreement between the measured and predicted horizontal dispersion measurements. With a help of the ON-LINE model a wrong polarity quadrupole power supply was detected. Three measurements of the dispersion function are presented in Fig. 3. The first measurement shown in Fig. 3 was done before a polarity of the quadrupole power supply was properly corrected. At the same plot design values are shown by the full line.

Figure 3: Dispersion function measurements before power supply correction $-\Diamond$ -, after the correction -o- and predicted horizontal and vertical dispersion functions.

4 BETATRON FUNCTION MEASUREMENTSBY THE TRIM QUADRUPOLES

Although a special program was developed for a purpose of the different element polarity check it was used also for the betatron amplitude measurements. The betatron functions at each adjustable quadrupole are determined by measuring the tune shift [1] due to a change of strength k l as shown in Eq. 1

$$\Delta \nu \simeq \frac{1}{4\pi} \int_{l} \beta(s) \Delta k \, ds, \tag{1}$$

$$\beta_Q \simeq \frac{4\pi\Delta\nu}{l\Delta k},\tag{2}$$

where β_Q is the average function of the beta function at the quadrupole. The tune shift is measured by a betatron tune measurement system described above. A part of the application program control and results from the measurements are shown in Fig. 4.

The betatron functions at the trim quadrupole locations were measured at the trim quad locations around the ring as presented for the horizontal betatron function in Table 2

H_STEER	V_STEER CO	RR_QUAD	∫ MAIN_	QUAD	∫SKEW_Q	UAD	ОСТ
Tune	ĸ	K(de	lta)	Ы	muX		dmuV
ho6-ta4	-0.01734168116		5940195	-0.000	28802629	0.00	01421493
bo6-ta5	-0.01733409145	9 -0.018563	4746546	0.0006	13638835	0.007;	263842615
b06-ta6	0.01507232549	0.016717	5493002	0.0016	7534081	-0.004	515753225
bo7-ta6	0.01507232549	0.016717	5493002	0.0059	87511322	-0.002	505962255
bo7-tq5	-0.01733409145	59 <mark>- 0.018563</mark>	4746546	-0.0001	24822291	0.005	971120016
bo7-tq4	-0.01734168116	67 <mark>-0.020809</mark>	5940195	-0.0101	74043501	0.004	593074252
bi8-tq4	0.01734168116	7 0.020809	5940195	0.006;	2841442	-0.011	622795812
bi8-tq5	0.01733409145	9 0.018573	6313488	0.0065	05541393	0.000	118557693
bi8-tq6	-0.01558884913	39 <mark>-0.017241</mark>	7390758	-0.0012	19501175	0.004	812500102
bi9-tq6	-0.01558884913	39 <mark>-0.017241</mark>	7390758	-0.0017	47072642	0.005	981369753
bi9-tq5	0.01733409145	9 0.018573	6313488	0.0063	68152211	1.858	0669e-05
bi9-tq4	0.01734168116	7 0.020809	5940195	0.0049	75657656	-0.005	340527276
bo10-tq4	-0.01734168116	67 <mark>-0.020809</mark>	5940195	-0.0141	83232613	0.0054	495408355
bo10-tq5	-0.01733409145	59 <mark>-0.018563</mark>	4746546	-0.0017	87023382	0.005	466765816
bo10-tq6	0.01507232549	0.016717	5493002	0.0057	70974986	-0.000	1715602027
bo11-tq6	0.01507232549	0.016716	8133468	0.0056	5343555	-0.002	177467824
bo11-tq5	-0.01733409145	59 <mark>-0.018563</mark>	4746546	-0.0004	94681292	0.004	774338223
bo11-tq4	-0.01734168116	67 <mark>-0.020809</mark>	5940195	-0.0112	65026214	0.004	618478402
bi12-tq4	0.01734168116	7 0.020809	5940195	0.00594	43950902	-0.008	321881306
bi12-tq5	0.01733409145	9 0.018574	4777399	0.0065	39648661	-0.000	617145848
bi12-tq6	-0.01558884913	39 <mark>-0.017241</mark>	7390758	-0.0028	68104294	0.005	802366722
bi1-tq6	-0.01558884913	39 -0.017241	7390758	0.0016	80772167	-0.000	348126276
bi1-tq5	0.01733409145	9 0.018574	4777399	0.0070	91240424	-0.001	100313521
bi1-tq4	0.01734168116	7 0.020809	5940195	0.0048	28280872	-0.01	125524854
bo2-tq4	-0.01/34168116	07 -0.020809	15940195	-0.0118	46162173	0.0054	466420469
bo2-tq5	-0.01/33409145		4746546	-0.0025	020110731	0.005	/18239823
bo2-tq6	0.01507232545		5133466	0.0005	02011009	-0.000	01002/0000
bo3-tq6	0.017232343	0.010/1/3	493002	0.0046	52103201	0.001	210321001
bo3-400	0.01734169110	7 0.020800	50/0105	0.0010	05902750	0.000	040040243
bid tod	0.01734168116	7 0.020003	50/0105	0.0053	28035716	0.000	022468251
bi4 ta5	0.01733409145	0.020003	6313488	0.0000	75770267	-0.000	358800593
bi4-405	-0.01558884913		7390758	-0.0040	91654965	0.006	462820105
bi5_ta6	-0.01558884913	39 <u>-0.017241</u> 39 <u>-0.017241</u>	7390758	-0.0020	02260626	0.006	213456605
hi5-ta5	0.01733409145	9 0.018573	6313488	0.00024	80236367	-0.000	1583007074
hi5-ta4	0.01734168116	7 0.020809	5940195	0.0046	40446953	-0.011	179929834
NO 44-7		0.020000		5.0070		0.011	

Figure 4: A part of a control page of the application program for the multi-element polarity check.

and for the vertical betatron function in Table 3. This is a part of the available data. The application had been built for finding elements with the wrong polarity during the commissioning and it is very easy to use. At the same time any discrepancies between the expected and measured values leads towards better understanding of the role of each element in RHIC.

Table 2: Horizontal Betatron function measurement

Tr. quad	$\Delta \mathbf{k}$	$\Delta \nu_x$	β_x	β_x mod.
bo2-tq4	-0.00347	-0.01185	42.93	39.28
bo3-tq4	0.00347	-0.01200	43.47	36.373
bo3-tq5	-0.00123	-0.00106	10.80	7.68
bo3-tq6	-0.00165	0.00469	35.84	39.280
bi9-tq4	0.00347	0.00498	18.03	18.9823

4.1 Difference Orbit Measurements

One of the fastest methods of finding the correspondence between the measured beam position orbit positions and expected lattice functions is a single corrector dipole kick with recording the orbit differences. Results obtained by this method, shown in the other publications at this con-

Tr. quad	$\Delta \mathbf{k}$	$\Delta \nu_y$	β_y	β_y mod.	
bo2-tq4	-0.00347	0.00547	19.8	18.87	
bo3-tq4	0.00347	0.00501	18.23	19.9	
bo3-tq5	-0.00123	0.00605	61.77	64.50	
bo3-tq6	-0.00165	-0.00122	9.31	13.07	
bi9-tq4	0.00347	-0.00934	33.85	36.46	

 Table 3: Vertical Betatron function measurements

ference [2], were also used to find sources of the local decoupling.

5 SUMMARY

This report had shown betatron function measurement results during the commissioning run. These measurements had shown to be very useful during this period especially the dispersion function measurements which allowed fast error analysis using the on-line model. It is expected to commission in RHIC soon a new AC dipole system with possibility of a very fast betatron function measurements in the whole ring by looking the beam position monitor response in the turn by turn mode.

6 REFERENCES

- E.D. Courant and H.S. Snyder, "Theory of Alternating Gradient Synchrotron", Annals of Physics, Vol. 3, (1958), pp. 1-48.
- [2] V. Ptitsyn, J. Cardona, F. Pilat, J. P. Koutchouk, "Measurement and Correction of Linear Effects in the RHIC Interaction Regions", at this conference, RPAH122.