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Abstract

We have developed the correction algorithm of the
closed orbit distortion (COD) under the constraint con-
dition where beam positions at particular points are not
changed. The new algorithm is based on the modified PSI-
NOM algorithm including the regularization process in or-
der to avoid the inversion problem of the ill-posed response
matrices. We have confirmed that the COD is well cor-
rected with no orbit leak in the simulation and is in good
agreement with the experiment.

1 INTRODUCTION

When the beam position change takes place during the
conventional global orbit correction processes, the photon
beam through the beamline is affected, and it results in the
alignment of mirrors and monochromators. This is par-
ticularly severe for a long beamline such as the undulator
beamlines. This problem can be overcome by introduc-
ing a local bump at the particular beamline. However, for
some light sources, there are not enough corrector magnets
to generate local bumps as much as needed. This difficulty
can be overcome when we correct the COD under the con-
dition where the beam positions at particular points are not
changed. This is our main objective to develop a method of
the closed orbit correction under constraint conditions.

2 THEORY

2.1 Ordinary COD correction and regulariza-
tion

The beam position is normally described as a vector |x〉
measured by M beam position monitors (BPM). In order to
correct the COD, we need N corrector magnets with their
strengths described as a vector |k〉. When the corrector
magnets kick a beam, the new beam positions |y〉 can be
described as follows.

|y〉 = R |k〉 + |x〉 . (1)

Here, R is called the response matrix of (M × N) dimen-
sions whose components are given by

Rij =

√
βiβj

2 sin πν
cos (|Ψi − Ψj | − πν) , (2)

where ν is the betatron tune of the storage ring, and (β i, Ψi)
and (βj , Ψj) are the beta function and the phase function

for the ith BPM and jth corrector magnet, respectively. In
order to reduce the COD, we have to choose the kick of
each corrector magnet satisfying

RTR |k〉 + RT |x〉 = 0 . (3)

It is called the PSINOM algorithm[1].
The COD correction is actually a minimization proce-

dure of S defined as

S =
1
2

{〈k|RTR |k〉 + 2 〈x|R |k〉 + 〈x |x〉} . (4)

By using the relations of vector operators which are hyper-
dimensional gradient operators, we can get the same result
of PSINOM algorithm as shown in eq. (3).

This algorithm includes an inversion procedure of the
matrix RTR. In some cases, we can get unacceptable cor-
rections due to the ill-posedness of RTR. A regularization
method is introduced to avoid this problem. In this case, S
is written as

S =
1
2

{〈k|RTR |k〉 + 2 〈x|R |k〉 + 〈x |x〉}

+
1
2
〈k|α |k〉 . (5)

where α is the regularization parameter. Then the mini-
mum corrector kicks can be determined by

(
RTR + αI

) |k〉 + RT |x〉 = 0 . (6)

This equation represents the modified PSINOM algorithm,
and we can relax the inversion problem of the singular
matrix by using the diagonal matrix αI when RTR is
singular[2].

2.2 Method with constraint conditions

After having the new closed orbit with the minimum dis-
tortion from eq. (6), the new orbit is generally different
from the original orbit. Sometimes, this difference can be
taken place at very sensitive locations such as the entrance
and the exit of an undulator. If the beamline is well aligned
for this undulator, a COD correction should be avoided
in this region. A constraint condition can be described in
terms of the beam position at ith BPM such as

〈Ri |k〉 + x0i = xi . (7)
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Here, 〈Ri| is the ith row of the response matrix R. Also,
x0i and xi are the beam positions before and after the cor-
rection, respectively. Since we want to keep this position
unchanged, 〈Ri |k〉 should be zero. If there are L BPMs
involved in the constraint condition, we can write the con-
straint condition as follows.

CT |k〉 = 0. (8)

Here, CT is the (L×N ) sub-matrix of the response matrix.
Each component of CT corresponds to the BPM involved
in the constraint condition. We also assume that |k〉 has a
non-trivial solution.

We now add this constraint condition to the modified
PSINOM algorithm to obtain the new S such as,

S =
1
2

[〈k|RTR |k〉 + 2 〈x|R |k〉 + 〈x|x〉]

+
1
2
〈k|α |k〉 + 〈Γ|CT |k〉 . (9)

Here, 〈Γ| is the Lagrangian multiplier, and it is an L dimen-
sional vector. By following the derivative to the corrector
strength, we can get the vector |k〉 which minimizes the
closed orbit distortion outside the constraint region such
as,

(A + αI) |k〉 + RT |x〉 + C |Γ〉 = 0. (10)

Here, we define the square matrices of N ×N dimensional
A and L × L dimensional D as follows.

A = RTR, (11)

D = CT (A + αI)−1 C . (12)

Eq. (10) can be rewritten as

|Γ〉 = −D−1CT (A + αI)−1 |x〉 . (13)

Now, we can remove the Lagrangian multiplier |Γ〉 in eq.
(10) by using the above equation. Then, we can finally get
the kick values of the corrector magnets as follows.

|k〉 = − (A + αI)−1
{
I − CD−1CT (A + αI)−1

}

RT |x〉 . (14)

3 SIMULATIONS AND EXPERIMENTAL
RESULTS

In order to test the validation of the orbit correction
algorithm under the constraint condition, we have con-
ducted the experiment and the computer simulation. The
new correction code is written in C language and it is in-
stalled in the PLS control system. The code consists of
two parts: one for reading BPM signals and setting cor-
rector strengths, and the other for the matrix calculation
based on eq. (10). Since the high real-time capability is
not necessary in our orbit correction, we execute BPM sig-
nal readings and corrector strength settings from the con-
trol database in the shared memory of the operator interface
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Figure 1: Schematic diagram of the orbit correction code.

workstation. The control database is synchronized the ma-
chine control parameter in the real-time VME system via
Ethernet. In the matrix calculation, we use the scilab-2.5
code[3]. The configuration for new correction code used in
this experiment is illustrated in Fig. 1.

3.1 Choice of BPMs and correctors

The PLS lattice consists of 36 bending magnets, 144
quadrupole magnets, 48 sextupole magnets, 72 correctors,
and 108 BPMs in the 280-m circumference ring to form
a 12-fold symmetry. The response matrix is obtained by
reading entire BPM signals while changing the current of a
corrector. We select 24 correctors randomly, and we choose
a sector containing 40th through 49th BPMs as a constraint
region. Finally, 90 BPMs are selected randomly from the
remains for this experiment. Ten BPMs in the constraint re-
gion are always included in the random selection process.

In order to quantify the result of the orbit correction, we
define the rms reduction rate as the ratio of the rms orbit
distortion before and after the correction[4]. In this defini-
tion, we exclude the orbit distortion in the constraint region
because our aim is to preserve the orbit in the constraint
region. We also define the rms orbit leak as the rms or-
bit change before and after the orbit correction in the con-
straint region. The orbit leak will show how well the con-
straint is preserved after the orbit correction.

3.2 Choice of α by simulations

The next task we have performed is the proper choice of
α. The simulation is done by using the Methodical Accel-
erator Design (MAD) code[5] and the scilab-2.5 code[3]
for the matrix calculation. We have simulated 30 different
orbit distortions for each choice of α when α varies in the
range of 0 ≤ α ≤ 1, and the results are summarized in
Table 1. When α is too small, we may face a poor inver-
sion, and the rms reduction rate is not affected significantly
when α is larger than 0.1. Therefore, we use the regular-
ization parameter α as 0.01 throughout the experiment and
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Table 1: The RMS orbit reduction and the RMS orbit leak
for various α values.

α reduction leak [µm] α reduction leak [µm]

0.0 0.513818 1.761 0.4 0.694326 1.928
0.001 0.513794 1.698 0.5 0.713526 1.848
0.01 0.504790 1.751 0.6 0.729353 1.890
0.05 0.548938 1.767 0.7 0.742810 1.937
0.1 0.586028 1.793 0.8 0.754507 1.962
0.2 0.636718 1.831 0.9 0.764841 2.049
0.3 0.669948 1.874 1.0 0.774087 1.994
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Figure 2: Result of COD correction under the constraint
conditions.

the simulation to avoid any singularity.

3.3 Results

As a typical example of the orbit correction, Fig. 2 shows
that there is little orbit change in the constraint region,
while a significant orbit reduction is taken place outside the
constraint region. Figure 3 also shows the experimental re-
sult of the orbit correction for 30 different orbit distortions.
The rms orbit reduction which is the solid line in Fig. 3 is
about 0.58.

This experimental result is compared with the simulation
in Fig. 3. In the simulation, we use the same BPMs and
correctors for the orbit corrections. The rms orbit reduction
in the simulation which is the dotted line in this figure is
0.50. Although the magnitude of rms orbit distortions in
the experiment is larger than the one for the simulation,

Figure 3: RMS orbit reduction.

Figure 4: RMS orbit leak.

the experiment is in good agreement with the simulation
by counting the nonlinearity and various errors in the real
lattice. We also measure the rms orbit leak in the constraint
region for 30 different orbit corrections as shown in Fig.
4. It shows the rms orbit leak with respect to the amount
of the rms orbit distortion in the entire ring. The leak rate
which is the solid line in Fig. 4 is about 0.13.

4 CONCLUSION

We have developed the COD correction algorithm under
the constraint condition where the beam position at particu-
lar point is not changed. The new algorithm is based on the
modified PSINOM algorithm which includes the regular-
ization process in order to avoid the inversion problem of
the ill-posed response matrices. There are two parameters
introduced during the development of our algorithm. While
the Lagrangian multiplier is eliminated by the constraint
condition, the parameter α from the regularization process
must be determined empirically. We have confirmed that
the COD is corrected by about 42% in the experiment and
about 50% in the simulation. By counting various non-
linearities in real lattice, the COD corrections done by the
experiment and by the simulation are in good agreement.
Even though the simulation based on the linear lattice gives
negligible orbit leaks, it is observed in the experiment that
the rms orbit leak is sensitive for the lattice nonlinearity,
which needs a further study.
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