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Abstract

The formulae relating the luminosity to the transverse
beam sizes as determined by luminosity scans, are derived
with the hourglass effect properly taken into account.

1 INTRODUCTION

If the length of two colliding bunches is sufficiently
small compared to the valuesβ∗x and β∗y of the betatron
functions at the interaction point (IP), the luminosity per
bunch crossing is given by:

L∗ =
N1N2

2πΣ∗xΣ∗y
, (1)

whereN1 andN2 are the number of particles in the two
colliding bunches, andΣ∗x, Σ∗y are, respectively, the convo-
luted horizontal and vertical bunch size at the IP.

However, if the bunch lengths are comparable to or
larger thanβ∗x and β∗y , the luminosity is a more compli-
cated function because of the variation of the transverse
beam size along the length of each bunch. This is due to
the growth of the betatron functions away from the IP. As
a result, the actual luminosity is smaller than the nominal
value (1): this is known in the literature as the ‘hourglass
effect’. A formula for the reduction factor between the ac-
tual and the nominal luminosity can be found in [1, 2].

Because the dependence of the luminosity on the sizes
and relative positions of the colliding bunches is calcula-
ble, one can extract IP beam-size information from lumi-
nosity measurements carried out as a function of the rel-
ative transverse separation of the two beams at the colli-
sion point. The subject of this paper is the derivation of
the correct relationship between the actually produced lu-
minosity and the apparent transverse sizes extracted from
luminosity scans, with the hourglass effect properly taken
into account.

2 LUMINOSITY FORMULA

Consider two beam distributions in space and time
ρ1(x, y, z, t) andρ2(x, y, z, t). The general formula for the
luminosity associated with the collision of the two beams
is given by

L =
∫

dxdtρ1ρ2

[
(v1 − v2)2 −

v1 × v2

c2

] 1
2

, (2)
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wherev1 andv2 are the two beam velocities [3]. Now let
us specialize to the case of ultra-relativistic beams moving
along thez axis, experiencing head-on collisions (i.e. the
two velocities are parallel and|v1| = |v2| ' c), and having
a rigid gaussian distribution in all three space dimensions
with a transverse offset (i=1,2):

ρi(x, y, z ± ct) =
Ni√

(2π)3σxiσyiσzi

exp

[
− (x− xi)2

2σ2
xi

− (y − yi)2

2σ2
yi

− (z ± ct)2

2σ2
zi

]
. (3)

Assume that the coordinate frame is set in such a way that
z = 0 corresponds to the IP. The transverse rms sizes of
the two beams close to the IP varies withz according to
σ2

xi = σ∗2xi (1 + z2/β∗2xi ), andσ2
yi = σ∗2yi (1 + z2/β∗2yi ),

whereβ∗xi, β∗yi, andσ∗xi, σ∗xi are, respectively, the betatron
functions and the rms transverse sizes of the two beams at
the IP.

Having introduced the definitions of the convoluted
beam sizesΣx(z) =

√
σ2

x1(z) + σ2
x2(z), Σy(z) =√

σ2
y1(z) + σ2

y2(z), andΣz =
√

σ2
z1 + σ2

z2, we can carry

out the integration in the transverse variables in (2) withρi

defined by (3) and obtain

L = 2c

∫
dzdtρ1ρ2

=
2N1N2√
(2π)3Σz

∫ ∞

−∞
dz

exp
(
− 2z2

Σz
− x2

2Σx
− y2

2Σy

)
ΣxΣy

.

In the above expressionx = x1 − x2 andy = y1 − y2 in-
dicate the relative displacement of the centroids of the two
colliding bunches in the tranverse plane. After changing the
integration variable tou =

√
2z/Σz and having definedux

anduy as

1
u2

x

=
Σ2

z

2Σ∗2x

(
σ∗2x1

β∗2x1

+
σ∗2x2

β∗2x2

)
, (4)

1
u2

y

=
Σ2

z

2Σ∗2y

(
σ∗2y1

β∗2y1

+
σ∗2y2

β∗2y2

)
, (5)

we can rewrite

L(x, y) =
N1N2

2πΣ∗xΣ∗y

∫ ∞

−∞

du√
π

uxuy√
u2

x + u2
√

u2
y + u2

×

exp

(
−u2 − 1

2
x2

Σ∗2x

u2
x

u2
x + u2

− 1
2

y2

Σ∗2y

u2
y

u2
y + u2

)
,
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where we have emphasized the dependence of luminosity
on the relative transverse offsetsL = L(x, y). Notice that
the quantitiesux anduy are a measure of the betatron func-
tions at the IP in units of the bunch length. The expression
L0 for the actual luminosity atx = y = 0,

L0 =
N1N2

2πΣ∗xΣ∗y

∫ ∞

−∞

du√
π

e−u2√
1 + u2/u2

x

√
1 + u2/u2

y

,

(6)
is identical to that reported by Furman in [1, 2]. Simple
inspection of integral (6) shows thatL0 = L∗ in the limit
ux, uy →∞, as expected.

3 BEAM SIZE FROM LUMINOSITY
SCANS

Beam size measurements using luminosity scans [4, 5]
exploit the dependence of luminosity on the transverse dis-
tance between the centroids of the two colliding bunches.
For fixedy (ideallyy = 0) one can measure the luminosity
as a function of the distancex separating the two bunches in
the horizontal plane. The rms of the resulting gaussian is an
estimate of the horizontal convoluted beam size. Similarly,
one can keepx fixed and determine the vertical convoluted
size by varyingy. We will refer to the bunch sizes mea-
sured in this way as the ‘apparent’Σapp

x andΣapp
y . As we

shall see in a moment these quantities coincide withΣ∗x and
Σ∗y only in the limit of vanishing bunch lengths. Formally
we have:

(Σapp
x )2 =

∫∞
−∞ dxL(x, 0)x2∫∞
−∞ dxL(x, 0)

, (7)

(Σapp
y )2 =

∫∞
−∞ dyL(0, y)y2∫∞
−∞ dyL(0, y)

. (8)

In evaluating (7) and (8) one needs to carry out the follow-
ing integrals:∫ ∞

−∞

e−u2√
1 + u2/a2

du = |a|ea2/2K0

(
a2

2

)
, (9)∫ ∞

−∞

u2e−u2√
1 + u2/a2

du =

|a|3

2
ea2/2

[
K1

(
a2

2

)
−K0

(
a2

2

)]
, (10)

whereK0 andK1 are the modified Bessel functions. We
obtain

(Σapp
x )2 = Σ∗2x

(
1 +

F (uy)
u2

x

)
, (11)

(Σapp
y )2 = Σ∗2y

(
1 +

F (ux)
u2

y

)
. (12)

Here we have defined the auxiliary function

F (u) =
u2

2

(
K1(u2/2)
K0(u2/2)

− 1
)

. (13)

The functionF (u), plotted in Fig. 1, increases monotoni-
cally from F (0) = 0 to F (∞) = 1/2. As expected,Σapp

x

andΣapp
y are always larger than and become identical to

Σ∗x andΣ∗y in the limit ux, uy →∞.

Figure 1: FunctionF (u), defined in Eq. (13), vs. u.

4 APPLICATION TO PEP-II

The betatron functions at the IP and typical values for the
longitudinal sizes for the electron (script ‘−’) and positron
(script ‘+’) bunches in PEP-II are

β∗x+ = β∗x− = β∗x = 50 cm,

β∗y+ = β∗y− = β∗y = 1.25 cm,

σz+ = 1.23 cm,

σz− = 1.35 cm.

From these numbers we obtainΣz =
√

σ2
z+ + σ2

z− =
1.82 cm, and from Eqs. (4) and (5):

ux =
√

2β∗x
Σz

' 38.8, (14)

uy =

√
2β∗y
Σz

' 0.968. (15)

Becauseu2
x � 1 one can evaluate the integral in (6) by

takingu2/u2
x ' 0 in the denominator of the integrand and

write [see Eq.(9)]:

L0 '
N1N2

2πΣ∗xΣ∗y

1√
π

uyeu2
y/2K0(u2

y/2). (16)

The formula above gives the expression for the actual lu-
minosity, i.e. the nominal (zero bunch length) luminosity
degraded by the hourglass effect. The reduction factor by
which we have to multiply the nominal luminosity L∗ [see
Eq. (1)] to obtainL0 is reported in Fig. 2 as a functionof
uy (see also [1, 2]). For PEP-II we haveL0/L∗ ' 0.85

,

i.e. the actual luminosity is smaller than the nominal lumi-
nosity by about15%.

The actual luminosityL0 can also be expressed in terms
of the ‘apparent’ convoluted beams sizes determined from
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Figure 2: Plot of the hourglass reduction factorL0/L∗ =
π−1/2uyeu2

y/2K0(u2
y/2) vs. uy [see Eq. (1) and (16)].

beam scans, by using Eqs. (11) and (12)

Σ∗2x =
(Σapp

x )2

1 + F (uy)/u2
x

' (Σapp
x )2, (17)

Σ∗2y =
(Σapp

y )2

1 + F (ux)/u2
y

'
(Σapp

y )2

1 + 1/(2u2
y)

. (18)

In the expressions above we have made use ofF (ux) '
1/2 andF (uy)/u2

x � 1, which hold because of (14) and
(15). Therefore we can rewrite (16) in terms of the ‘appar-
ent’ convoluted beam sizes as

L0 =
N1N2

2πΣapp
x Σapp

y

[
1√
π

uyeu2
y/2K0(u2

y/2)
]√

1 +
1

2u2
y

.

(19)
Often one uses the ‘apparent’ luminosity defined by

Lapp =
N1N2

2πΣapp
x Σapp

y
(20)

and computed from the measuredΣapp
x andΣapp

y , as an es-
timate of the actual luminosity. Eq. (19) shows that because
of the hourglass effect this is only an approximation forL0.
The term in the[ ] brackets in Eq. (19) is the reduction fac-
tor of Fig. 2 and is always smaller than one. On the other
hand, the term with the square root in Eq. (19) is larger than
one. It turns out that the latter always prevails so that the
overall correction factor one has to apply toLapp in order
to obtain the actual luminosityL0 is larger than one. We
call this the ‘hourglass augmentation factor’. It is plotted
in Fig. 3 as a function ofuy.

For the PEP-II parameters reported at the beginning of
this Section one obtains:

L0/Lapp ' 1.06. (21)

5 CONCLUSIONS

In this paper we introduced three distinct quantities: the
actual luminosityL0, Eq. (6), which is the luminosity pro-
duced when the bunches collide with no transverse offset;
the nominal luminosityL∗, Eq. (1), which depends only

Figure 3: Hourglass augmentation factorL0/Lapp =
π−1/2uyeu2

y/2K0(u2
y/2)

√
1 + 1/(2u2

y) vs. uy [see

Eq. (19) and (20)].

on the nominal transverse beam sizes at the IP; and finally
the apparent luminosityLapp, Eq. (20), which is defined
in terms of the ‘apparent’ beam sizes as measured by lumi-
nosity scans. If the hourglass effect is negligible these three
quantities are all equal. However, if the betatron functions
at the IP are smaller than, or of the same order as, the con-
voluted bunch length, the hourglass effect becomes impor-
tant, and the actual luminosityL0 turns out to be smaller
than the nominalL∗, but larger than the apparent luminos-
ity Lapp. The ratioL0/L∗, called the hourglass reduction
factor, is already known from the literature. The focus of
this paper was to evaluate the ratioL0/Lapp, which was
shown to be always larger than unity.
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