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Abstract 

Collisionless charged particle beams are presumed to 
equilibrate via the long-range potential from the space 
charge.  The exact mechanism for this equilibration, along 
with the question of macroscopic reversibility, has been 
uncertain, however.  A number of computational 
approaches based on particle-in-cell (PIC) methods are 
presented which can facilitate the resolution of these 
questions.  One such technique is the self-consistent 
tracking of individual particle orbits through the nonlinear 
potential formed by nonuniform charge density 
distributions.  This orbit-tracking model differs from the 
particle-core model in that the sampled particles are 
systematically chosen from the actual particles in a fully 
self-consistent simulation. The results of this analysis are 
presented for a number of representative cases, and the 
implications of the study on equilibration mechanism are 
discussed. 

1 INTRODUCTION 
Charged particle beams with space charge are typically 

collisionless Hamiltonian systems where the detailed 
density distribution self-consistently governs the 
dynamics via Poisson's equation.  The questions of 
equilibration, damping, and reversibility are of 
fundamental importance in determining beam properties.  
For example, equipartitioning of anisotropic beams 
involves nonlinear energy transfer and evolution towards 
an isotropic meta-equilibrium [1].  It is important for the 
accelerator designer to know whether the exchange of 
energy in this process is reversible.  The same question 
arises when considering emittance growth due to 
misalignments or dispersion [2].  Reversibility implies the 
possibility of correction.  Although extensive theory has 
been developed about thermodynamic equilibrium as it 
applies to beams [3], the absence of collisions necessitates 
the search for an alternative dissipation mechanism 
responsible for equilibration.   

In this paper, we consider the possibility of one such 
dissipation mechanism: namely, phase mixing of globally 
chaotic particle orbits [4], which we call chaotic mixing.  
Chaotic orbits are characterized by sensitivity to initial 
conditions leading to exponential separation of nearby 
orbits.  The process is therefore fundamentally 
irreversible.  Further, globally chaotic orbits distribute 
themselves throughout their accessible phase space.  

   
@ ramiak@ebte.umd.edu 
* FNAL, Batavia, IL 
# Naval Research Lab, Washington, DC. 
� U. of Florida, Gainesville, FL. 
� http://www.ireap.umd.edu/umer/ 

 
If chaos turns out to be an important contributor to the 
dynamics of beams, then (i) the physics of rapid 
"relaxation processes" can be accessed and studied, and 
(ii) the accelerator designer will need to account for it.   

 
We have developed computational tools, based on the 

particle-in-cell (PIC) code WARP [5], which we are using 
to investigate the behavior of interacting or non-
interacting test particles affected by the self-consistent 
potential of the beam.  We give examples involving both 
chaotic and regular orbits, and relate the associated 
dynamics to observable phenomena such as damping and 
equilibration.   

2 COMPUTATIONAL TOOLS 
For the simulations, we use the 2-1/2 D version of the 

PIC code, WARP.  Large numbers of particles are pushed 
in the self-consistent potential created by the space 
charge, as well as a predefined external field.  For these 
preliminary runs we apply only a constant linear external 
focusing (�smooth approximation�), so any nonlinearity 
in the fields arises solely from the non-uniformities of the 
particle distribution.  The degree of nonlinearity in the 
system can be manipulated by introducing more 
sophisticated geometries, such as a mismatch, a periodic 
lattice, anisotropy, altering the initial distribution, or any 
of host of complications.   

Collections of test particles are also introduced at 
various locations of phase space.  Each set of test particles 
(�ensemble�) initially occupies a narrow portion of the 4-
D phase space, and is introduced in the code as a different 
species, albeit with the same charge and mass as the main 
beam, to ease in tracking it.  The weight of macroparticles 
in each species can be adjusted at will.  Thus we can make 
the test particles invisible to the main beam by setting the 
weight to zero; alternatively, we can give them any 
arbitrary non-zero weight, causing them to perturb the 
self-fields.  The different ensembles are initialized to have 
a fraction of the size and velocity spread of the main 
beam, typically, 1/100.  The moments of each species (the 
main beam being species 0) are calculated and saved 
periodically.  Further, a small number of particles are 
selected at random from each species and their trajectories 
saved.   

For the cases shown here, a constant focusing strength 
of κo = 15 m-2 is applied to a 10 kV, 100 mA electron 
beam with an emittance of 50 mm-mr.  This results in a 
beam radius of about 1 cm, and a tune depression k/ko of 
about 0.2, making the beam highly space-charge-
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dominated.  Typical numerical parameters are: 256 × 256 
cells across the 5 cm diameter of the beam pipe; 4 million 
particles in the main beam (or 121 particles/cell); 20,000 
particles in each test ensemble; and a step size of 2 cm, 
significantly smaller than any of the characteristic 
wavelengths of the system (λp = 1.14 m; λβo = 1.63 m; 
λβ = 12.6 m).  The initial distribution used in this case is a 
semi-Gaussian, although others will be attempted. 

Fig. 1: Sequence of particle plots with colored ensembles, 
taken at distances of 0.0, 11.52, 51.84, 100.8, 169.9 m 
(top to bottom).  Left is an x-y projection, right is y-y�.  

3 RESULTS 
Figure 1 demonstrates the growth of the size of each 

ensemble as a function of propagation distance, s.  In this 
particular simulation, only the particles in the blue 
ensemble are interacting with the main beam (at full 
weight), while other ensembles are non-interacting. To 

ascertain whether the mixing is chaotic or not, we plot the 
moments of each ensemble on a semi-log scale, as shown 
in Fig. 2 for the �emittance� of the ensembles from the 
simulation of Fig. 1.  It is apparent that for most 
ensembles, the exponential growth saturates at an early 
stage, before the particles fill even a fraction of the 
available phase space.  Afterwards, the ensembles 
continue to grow in size, but not exponentially, indicating 
that the mixing mechanism is not globally chaotic.  The 
small span of exponential growth at the beginning is an 
indication of local chaos, possibly arising from the 
particle noise.  This is to be expected for a case like this, 
since the potential experienced by the particles is well 
behaved, and the only nonlinearities arise from relaxation 
of the particle distribution via small-amplitude space 
charge waves [6].  In this case, the blue ensemble has the 
fastest mixing rates, possibly because the blue ensemble 
acts as a perturbation to the potential in its vicinity. 

Fig.2: Evolution of natural logarithm of the �emittance� 
moment for ensembles in the isotropic beam of Fig. 1. 

 
In order to observe more prominent mixing, we 

introduce an anisotropy by doubling the initial beam 
emittance in the x direction to 100 mm-mr [we further 
adjust the focusing field and the beam size to maintain a 
matched beam].  This anisotropy in a symmetric focusing 
channel has been observed [1] to very quickly lead to 
equipartitioning by exchange of energy in the two 
transverse directions.  Figure 3 illustrates the growth of 
the emittance moment of each ensemble for this 
anisotropic case.  Contrasting this with the curves from 
Fig. 2, it is obvious that the mixing proceeds much faster 
for all the ensembles in the anisotropic case.  We further 
observe that the majority of ensembles now continue the 
exponential growth until they fill a large fraction of the 
phase space before saturating.  This is a good indicator of 
chaotic mixing.   
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Fig. 3: Evolution of natural logarithm of the �emittance� 
moment for ensembles in the anisotropic beam. 

 
The e-folding distance which can be measured from the 

figure is about 2 m, roughly consistent with the scale over 
which the beam equipartitions (it takes about 5 m for the x 
and y emittances of the main beam to become equal).  It 
therefore appears that the chaotic mixing is somehow 
associated with the equipartitioning of the anisotropic 
beam.  The total distance it takes for the ensembles to fill 
the entire phase space (about 50 m) is furthermore 
consistent with the damping scale of the remaining 
oscillations in the main beam emittance.  

 
We can draw another comparison by examining the 

particle orbits in phase space.  Fig. 4 contains such plots 
for two distinct ensembles.  The one on the left represents 
the trajectories of 20 particles from the red ensemble in 
the simulation in Figs. 1 and 2, whereas the one on the 
right is  from the green ensemble in the simulation of Fig. 
3.  It is apparent that the orbits on the left are well 
behaved, whereas the ones on the right appear less regular 
and indicate possible chaotic behavior. 

4 CONCLUSIONS 
Preliminary results obtained so far indicate that there is 

a good possibility for chaotic mixing in beams.  Much 
remains to be done to isolate real chaotic mixing from 
numerical effects and also to relate it to other phenomena 
such as instabilities.  We wish to extend this investigation 
to more clearly delineate conditions under which chaotic 
mixing can take place.  It is likewise conceivable that 
laboratory experiments in beams can be set up to study  
such physics with applications to other areas, such as 
galaxies [7], or large N-body systems of self-interacting 
particles in general. 

Fig. 4: Particle trajectories in phase space, x-y, x-x�, and 
x�-y� (top-bottom). 20 particles each from red ensemble of 
Figs. 1 and 2 (left); and green ensemble of Fig. 3 (right). 
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