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Abstract

Simulation of high intensity accelerators leads to the so-
lution of the Poisson Equation, to calculate space charge
forces in the presence of acceleration chamber walls. We
reduced the problem to “two-and-a-half” dimensions for
long particle bunches, characteristic of large circular accel-
erators, and applied the results to the tracking codeOrbit.

1 THE SPACE CHARGE PROBLEM

In PIC tracking of an accelerator, a “herd” of randomly
generated macro particles are pushed through a lattice rep-
resented by a sequence of maps[3]. Once all the macros
have reached certain locations, SC (space charge) nodes,
their densityρ is calculated by binning to a grid, and the
potentialΦ is found by solving the Poisson Equation with
boundary (wall) conditions

∇2Φ = − 1
ε0
ρ, ρwall(x, y, z) = g(x, y, z) (1)

From the potentialΦ, SC force components (with a coef-
ficient to account for the balance between electrostatic and
magnetic action), are calculated by derivation and applied
to each macro as transverse angle kicks

∆�p =
∫

�F dt (2)

In a ring with long bunches we may uncouple the transverse
motion from the longitudinal

ρ(x, y, z) = ρz(z)ρu(x, y) (3)

and solve the Poisson problem in parallel in many longitu-
dinal beam slices, where macros are subject to different SC
kicks, due to different transverse beam aspect ratios.

Since lattice map sequence controls the propagation, and
the Poisson problem must be solved with all the macros
evaluated at the same time, when the herd reach a SC
node, each macro is longitudinally moved with respect to
some reference (synchronous particle), using lattice trans-
fer maps. Fig.1 show a beam bunch thus “frozen” at a given
time in a simple FODO channel for SC calculation.

Limitations of this procedure are that maps used to put
macros in their appropriate place are for the bare lattice (no
extra focusing and tune shift due to SC forces), and that
longitudinal forces between slices are disregarded.

A better approximation is obtained by decomposing also
the potentialΦ in a longitudinal and a transverse part

Φ(x, y, z) = Φz(z)Φu(x, y) (4)
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Figure 1: Frozen matched beam. Envelope is also shown.

In Cartesian coordinates Poisson becomes

Φz∇2
⊥Φu + Φu

∂2Φz

∂z2
= − 1

ε0
ρzρu (5)

With both ρz(z) and Φz(z) piece-wise constant, equate z
and (x, y) functions on both sides of Eq.(5), to obtain

Φz = ρz, ∇2
⊥Φu = − 1

ε0
ρ⊥(x, y). (6)

Then, an approximate solution is obtained by solving for
Φu in the transverse space using ρu, and then multiply the
result by the constant Φz

Φ(0)(x, y, z) = ΦzΦu(x, y). (7)

For a better solution, use a perturbative method. With
Φ(1)

z (z) = Φz + φ(z) (φ small) in Eq.5, find, after can-
celing out the lowest order terms

∂2φ(z)
∂z2 + ω2φ(z) = 0, ω2 = − ρu

ε0Φu
(8)

Assuming in the center of the beam: φ(0) = 0, obtain a
solution

Φ(1)
z (z) = Φz +

1
ω

∂Φz

∂z
(0) cos(ωz) (9)

Note: (1) The frequency ω is a (weak) function of (x, y).
i.e. transverse charge density and transverse potential have
similar shape. (2) The derivative of the longitudinal po-
tential in the center of the slice in Eq.(9) is approximately
proportional to the longitudinal variation of current in the
beam at that location, in agreement with the basic result of
the impedance model.

2 POISSON SOLVERS

2.1 Integral Poisson Solvers

The integral formulation of Poisson equation is

φ(P ) = Cρz

∫
ρu(Q)
|P −Q| dQ (10)
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with P a field point, Q a source point, and C is a perveance
coefficient including the factor 1

γ2 .
A direct integration of Eq.10 (Brute Force, or BF) gives

a very transparent solution, with limitation: (1) arbitrary
treatment of poles arising from field points accidentally co-
incident with source points, (2) difficulties to include im-
ages on walls in the calculation, (3) length of execution.

Eq.(10) can be solved by convolution, by first perform-
ing a FFT of the Green function G(u) = 1

r and of the
charge density

(
G̃(ω)
ρ̃⊥(ω)

)
= FFT

(
G(u)
ρ⊥(u)

)
. (11)

and then find the potential by the anti-FFT of the convolu-
tion

Φ(r) = Cρ‖FFT−1
(
G̃(ω) ∗ ρ̃⊥(ω)

)
. (12)

FFT needs a grid twice the size of the beam to avoid aliases.

2.2 Differential Poisson Solvers

The differential Poisson Eq.(1) can be solved by LU de-
composition, by discretization on an N ×N grid

−4πρij =
∑

kl Lkl
ijΦkl, Φ(P ) = − 1

4πL−1ρ(Q)
(13)

In Cartesian coordinates, the Laplacian is written as

Lkl
ij = −4δk

i δ
l
j +δk

i+1δ
l
j +δk

i−1δ
l
j +δk

i δ
l
j+1+δk

i δ
l
j−1. (14)

L is a very large N 2 ×N2 band-sparse matrix. In general,
its inverse is dense.

Eq. 13 can also be effectively solved by iteration. From

ρi,j =
Φi−1,j + Φi,j+1 + Φi+1,j + Φi,j−1 − 4Φi,j

h2

(15)
it is, at iteration k

Φk+1
i,j =

1
4

(
Φk

i−1,j + Φk
i,j+1 + Φk

i+1,j + Φk
i,j−1 − ρi,j

)
.

(16)

2.3 Walls

The effect of walls is classically treated by using
impedances Zn [4], calculated as a function of frequency
mode. Voltage kicks are applied to The FFT components
of the current.Another approach with an electrical circuit
analog can find how the beam is coupled to walls via E-M
fields[5].

The Poisson Eq. allows one to calculate walls by adding
to the true charges in the beam, image charges and currents
on the walls. Images need to be known in advance for in-
tegral Poisson solvers. In differential solvers, knowledge
of wall potential suffices, and images can be subsequently
calculated. This suggests the interesting possibility that, in
turn, Poisson solvers can be used to calculate impedances
in odd wall geometries.

We must extend the grid to the walls. A Cartesian grid
is often not suitable, since it will end up in a bad density of
points at the wall, essentially ignoring corners. A cylindri-
cal or an elliptical transverse grid, Fig.2, or more generally
an adaptive grid is better fit to treat walls.
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Figure 2: Elliptic mesh. Equal cell areas at a given radius

The Laplacian in the elliptic coordinate system is

(
1 +

1
γ2

− α2

)
∂2

∂r2
−β

r

∂2

∂r∂θ
+
α2

r2
∂2

∂θ2
+
β

r2
∂

∂θ
+
α2

r

∂

∂r

where the azimuthal coordinate θ is the parameter along the
grid lines, γ is the ratio of the ellipse axes,

α2 = sin2θ +
1
γ2

cos2θ, β = 2
(

1 − 1
γ2

)
sin θ cos θ.

The discrete 9-point Laplacian for the elliptic grid with a
radial grid refinement ratio dri+1/dri = k is

∇2Φi,j =AΦi+1,j +BΦi−1,j +CΦi,j+1 +DΦi,j−1 +EΦi,j

+FΦi+1,j+1 +GΦi+1,j−1 +HΦi−1,j+1 +IΦi−1,j−1

where the coefficients are functions of k, α, β, θ, dr, dθ.

3 PARALLEL COMPUTING

To push a large herd of many representative macro particles
around the lattice of an accelerator under SC forces we use
parallel computers with many nodes, each consisting of a
processor and associated memory. Our paradigm of choice
was MPI (Message Passing Interface)[6].

3.1 Parallel Tracking

In rings particles may be tracked for many turns, from 10 3

to 106. A typical ring lattice may contain hundreds to thou-
sands transfer maps and SC nodes per turn.

When self forces are negligible, tracking is an “embar-
rassing parallel” problem, where each processor runs the
same code on a subset of macro particles. Space charge
dominated beams lead to much more complex parallel
computing issues. In this case, The Poisson problem is
dealt with following one of two possible strategies:(1) each
processor pushes a sub-herd of particles residing anywhere
along the beam, and (2) each processor pushes macros be-
longing to a given longitudinal slice, as described in Sec.1.
The first strategy deals with the beam as a whole, however
with much message passing, since each processor must
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Table 1: Specifications for the BNL Galaxy Cluster[1].
Nodes: 2 CPU’s 512 MB RAM
CPU specs: Intel Pentium III
500 MHz 512 kB L2 Cache
Interconnection: Cisco Switch 100 MB Ethernet
File System: NFS
MPI: mpich 1.2 compliant

share the position of each macro at an SC node. The sec-
ond presents a problem of ghosts, i.e. macros that because
of longitudinal motion within the beam migrate between
contiguous slices. MPI contains tools to address the prob-
lem of ghosts.

At a SC node, we solve Poisson Eq. The FFT method
is straightforward in parallel: since the integrals are linear
operators. The BF is not parallel with regards of number of
macros involved. The 4-fold size of the nested loops to cal-
culate the integral depends only on the grid size, the sums
just being applied at each processor to smaller numbers, i.e.
the individual partial charge densities.

For parallel LU, a set of L matrices (one for each wall
configuration) and their inverse needs to be calculated only
once, at the beginning of the run. What has to be done at
a space charge node is the matrix multiplication in paral-
lel, by assigning to each processor a band of rows of the
inverted matrix and multiply this band times all the ρ’s to
find at each processor the potential or force for a region of
the grid, as shown in Fig.3.

Figure 3: LU Parallel Strategy

3.2 Examples

We compared the speed of Poisson solvers (LU, FFT and
BruteForce) for a herd of 3.6106 macros (105 per process),
using the Brookhaven Galaxy cluster described in Table 3.2
with 77 processors. The results are shown in Table 3.2. The
x-force field is shown in Fig.4.

As a second application, we implemented a MPI version
of the tracking code Orbit[2] with FFT Poisson solver and

Table 2: Results of Poisson solvers. Two grid sizes
BF/FFT/LU

Grid: 33/65/33 65/129/65
Elapsed Time [s]

Lu Solver 0.0279 0.1407
FFT 0.0538 0.2558
BruteForce 0.1343 2.1300

Figure 4: Horizontal component of the Force.

run it in parallel on the Galaxy. Timing results are given
in Table 3. A number of macros exceeding 25 106 is not
at the present time possible due to memory limits. Linear
performance scaling was observed with 32 processors.
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Table 3: Orbit timing (wall clock) on the Galaxy. 1 Turn.
With SC No SC

Nodes Macros/Turn time time
per Node sec sec

2 1.6 106 1934 818
9 0.2 106 253 85

17 0.1 106 142 42
33 0.05 106 88 23
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