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Abstract

Currently, two parallel feedback systems correct the
transverse Advanced Photon Source (APS) orbit in both
planes: a workstation-based slow (DC) system and a real-
time system (RTFS) that samples at 1.6 kHz. A partial so-
lution to preventing feedback-system crosstalk has been to
bandlimit the RTFS from below, but this fix has borne a sys-
tem deadband in which little orbit correction is achieved.
We present a matrix time-domain compensation algorithm
that greatly reduces the system deadband, as well as opera-
tional data.

1 PROBLEM STATEMENT

The Advanced Photon Source (APS) real-time [1] and
DC [2] orbit correction systems currently run in paral-
lel, and both attempt global correction. The first uses 38
high-bandwidth correctors and about 160 beam-position
moniters (BPMs) in each plane and operates at a 650 µs
sampling interval. The workstation-based DC system uses
80 correctors and all available BPMs (> 300) and updates
its correction at intervals of between 2.5 and 4 seconds.
The real-time system provides wide band correction, but
cannot correct as many spatial modes as the DC system (be-
cause of its relatively small number of correctors); it also
cannot make use of BPM “despiking” [2], in which spuri-
ous BPM-signal offsets are ignored in feedback. In short,
(the characteristics of) both systems are needed. However,
when both systems are engaged simultaneously, they both
attempt correction in a frequency band shared by their re-
spective closed-loop bandwidths. The result is that the sys-
tems couple to, or “fight” each other, leading to an unde-
sireable closed-loop orbit in the overlap band.

Until recently, this problem was partially solved by the
following frequency-domain, scalar fix. The real-time sys-
tem’s bandwidth is cut off from below via a high-pass filter,
such that its frequency band of correction does not overlap
with that of the DC system. However, this is still only a
partial solution: if we desire no effective overlap, we are
left with a frequency deadband in which the beam orbit
motion is not corrected at all. On the other hand, if we
set the real-time system’s low-frequency cutoff so that it
is equal to the DC system’s closed-loop bandwidth, there
is still some fighting in the overlap band; certain modes
are partially “corrected” by each system, and the compos-
ite orbit is worsened. This overlap/deadband problem has
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recently come to the fore, as many APS users move their
insertion-device (ID) gaps at rates that happen to fall in the
band in question. These effective step changes to the beam
orbit are globally felt, and are ill corrected when both sys-
tems are in operation; the orbit oscillates with a period of
nearly a minute, and it takes over one minute to decay to
zero.

In this paper, we report on a new solution to this prob-
lem. The solution takes into account the problem’s inher-
ent spatiality, which is the source of the systems’ undesired
coupling. We first present a theoretical framework for the
orbit feedback problem (Section 2). It is from this formu-
lation that the solution immediately suggests itself. Section
3 presents the results of our implementation.

2 THEORY

2.1 A Single-System Transfer Function Matrix

Following the notation of [3], we denote the M -tuple
vector of orbit readings (on the BPMs) at discrete-time in-
dex k as x[k]. In z-transform domain [4], this vector is
denoted as x(z). Assuming for now that only one feedback
system is in operation (either DC or real-time), then orbit
motion arises in two sources: ambient noise and magnet-
induced correction via the feedback system. We denote
these two contributions in z-space respectively as w(z) and
u(z). Thus, we have x(z) = u(z) + w(z).

The feedback system correction u(z) is obtained by re-
solving the beam’s orbit x(z) onto N correctors via an in-
verse response matrix (viz., the response matrix psuedo in-
verse). That is, the (N -tuple) so-called “corrector-error”
vector is given by

cE(z) = R+[s− x(z)], (1)

where s is the (constant) BPM set-point vector. This cor-
rector error is fed to a regulator (filter) from which a desired
current signal is fed to the corrector power supplies as a
(N ×1) command vector c[k]. The effect of the corrector’s
resulting magnetic field on the beam is also bandlimited
(i.e., not instantaneous) via eddy currents and zero-mode
beam dynamics. To first order (for small signals), the total-
ity of these dynamic effects can be represented by a linear
z-domain transfer function (in general, unique for each cor-
rector). Indeed, in the case of DC feedback, all but the reg-
ulator dynamics are negligible, and these are equivalent for
each corrector. Thus, for the DC case, the corrector-error
to feedback-system correction (matrix) transfer function is
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given by

u(z) =
G

z − 1
RcE(z), (2)

where R is the response matrix, and G is the system gain.
An equivalent time-domain version of this equation is

c[k] = c[k − 1] + GcE[k − 1] (3)

since R+R = I [3]. If, unlike the DC-system case, the
dynamics of the correctors are different, we have

u(z) = RH(z)cE(z), (4)

where H(z) is a diagonal matrix (since each corrector acts
independently of the others) of scalar transfer functions.

Combining the above equations, we obtain the following
key input-output relationship:

x(z) = G(z)[w(z) + Q(z)s], (5)

where G(z) := [I + RH(z)R+]−1 is referred to
as the transfer-function matrix (TFM), and Q(z) :=
G(z)RH(z)R+. Equation (5) governs the closed-loop
frequency-domain behavior of the orbit, given the ambient
noise, the BPM set points, the response matrix, and the lin-
earized system dynamics. Setting z = ejω, it is possible to
compute the feedback system’s efficacy in rejecting noise
at frequency ω. Another application of the TFM is given
below in the Appendix (Section 4).

2.2 Two-System Parallel Orbit Feedback

In the case of two parallel feedback systems, the vector
of orbit readings x(z) is comprised of noise and the orbit
corrections of the two systems; thus

x(z) = u1(z) + u2(z) + w(z). (6)

To precisely characterize the deadband/overlap phe-
nomenon, we extend the TFM formulation to two-system
parallel orbit feedback.

A subtle formulation problem arises from the fact that
each of the two feedback systems uses a particular set of
BPMs to compute its corrector-error vector, and not all
of these BPMs are shared between the two systems. To
completely characterize the closed-loops’ orbit, we must
account for all of the BPMs used (i.e., the union of the
two sets). Thus, each feedback system affects the same
M BPMs in our model, but uses only Ml ≤ M, l = 1, 2
of them to compute the corrector error. Another way of
saying this is that, although x(z) and ul(z), l = 1, 2 are
M × 1 vectors, each feedback system does not in general
use all M elements to compute the corrector error [cf. (1)];
instead system l uses Ml elements. Mathematically this is
represented as

ul(z) = RlHl(z)R+
l Ll[sl − x(z)], l = 1, 2. (7)

The matrix product RlHl(z)R+
l is of dimension M ×Ml,

and the conforming matrix Ll (Ml × M ) simply “zeros

out” those elements of x(z) not found in the inverse re-
sponse matrix R+

l . The lth system’s TFM is Gl(z) =
[I + RlHl(z)R+

l Ll]−1.
A closed-form solution to Eq. (6) is obtained by first

solving the coupled equations

u1(z) = G1(z)Q1(z)[s1 − w(z) − u2(z)]
u2(z) = G2(z)Q2(z)[s2 − w(z) − u1(z)], (8)

with Ql = RlHl(z)R+
l Ll, l = 1, 2. (As stated, the solu-

tion of Eq. (8) requires K inversions of a 2M×2M matrix,
where K is the number of frequency samples. However,
using Schur complements, one can simplify the equations
such that 2K inversions of a M×M matrix are needed [5].)

2.3 Overlap Compensation

A solution to the coupled system, i.e., deadband, prob-
lem arises quite naturally from Eq. (8). If we set s2 equal to
u1(z), then system two is unaffected by system one. That
is, the anticipated orbit contribution of system one is sent
to system two and effectively subtracted from the latter’s
set-point vector. Note that we cannot use two feedforwards
to mutually decouple the two systems, because then both
systems would attempt to control the orbit, leading to un-
desirable (unobservable) dynamics.

We have implemented the above system-to-system
“feedforward” as a solution to the deadband problem. We
have chosen to feed from the DC system to the RTFS; thus,
system indices 1-2 of Eq. (8) refer to the DC and RTFS re-
spectively. This choice requires the DC system to modify
the RTFS-BPM setpoints with reasonable speed. The oppo-
site choice (i.e., feeding from the RTFS to the DC system)
was ruled out because, among other reasons, the DC sys-
tem’s (computer network) timing jitter would be sensitive
to the very fast RTFS update rate. In short, our compen-
sation amounts to adjusting the real-time BPM set points
s2 with the expected orbit contribution of the DC system,
u1[k], where u1[k] is according to Eq. (2), and discrete-
time index k increments with the DC-system update time.
In practical terms, the DC system at each iteration must
write the result of Eq. (3), viz., the DC correctors’ desired
current, and also write new RTFS BPM setpoints s2 ac-
cording to s2 = L2R1c1[k].

3 RESULTS

3.1 Computational Results

The coupled-loops system behavior governed by Eqs.
(6) and (8) was computed, both with and without feedfor-
ward compensation, using the horizontal plane as an ex-
ample. Given the high speed of the real-time system’s re-
sponse, it is sufficient to model that system’s dynamics as
only a high-pass filter, with a cutoff of 0.5 Hz and a gain
of 25. The DC system’s (empirically) optimal parameters
are with a gain G = 0.4, and a T = 2.5-second update in-
terval. (Without compensation, it is impossible to run with
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these parameters because of the system cross-coupling; in
absence of feedforward, we have used G = 0.15, T = 4.0
in operations.) As shown in Fig. 1, the system’s com-
puted uncompensated response to white noise on corrector
S20A:H1, as seen on BPM S20A:P1 (0.05 betatron radian-
phase advance), exhibits a deadband centered at about 0.02
Hz. The figure shows that, for this particular experiment,
a two-fold improvement at that frequency is achieved with
the feedforward compensation.
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Figure 1: BPM S20A:P1 computed closed-loop responses
to white noise on a nearby corrector.

3.2 Empirical Results

We present before-and-after results for the horizontal
plane case in Fig. 2. Evidently, the DC-system-only re-
sponse is satisfactory in the steady state but suffers from
high-frequency noise; the reverse is true for RTFS-only re-
sponse. Both systems operating in parallel induce a ∼0.02-
Hz oscillation. The compensation removes the oscillation,
however, some discontinuous beam motion arises as a re-
sult of stepping the real-time BPM set points at the DC-
system update rate; this is the price paid for improved
lower-frequency response. Fig. 3 shows before-and-after
results for ID gap movement. A further operational con-
sequence of the algorithm is that we can ramp a circularly
polarized undulator ID device four times faster and with
a three-fold decrease in peak orbit distortion than before.
As of late May 2001, the compensation algorithm was in-
stalled for both planes.

4 APPENDIX

We mention here parenthetically that the TFM can be
used to compute the feedback system spatial “noise floor,”
i.e., the maximum achievable correction of betatron modes.
The method is illustrated for a DC-system only (but ap-
plies to parallel systems as well). Note first that R+ =
(R′R)−1R′, with ′ denoting transpose; therefore, R+R =
I. A further important fact [3] is that G(z) = I −
RH(z) [I + R+RH(z)]−1 R+, with H(z) = G/z − 1.
At DC z ≡ 1, hence, x(1) = [I− RR+]w(1). This last
equation quantifies the spatial noise floor: since (in the typ-

Figure 2: Response to step on nearby corrector.

Figure 3: Compensated and uncompensated response to
ID-gap movement.

ical case) RR+ �= I, there will always be residual orbit
motion irrespective of the value of the integrator gain G,
compare [6].
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