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Abstract�This paper addresses the modeling problem of 
the linear accelerator RF system for SNS. The cascade of 
the klystron and the cavity is modeled as a nominal 
system.  In the real world, high voltage power supply 
ripple, Lorentz Force Detuning, microphonics, cavity RF 
parameter perturbations, distortions in RF components, 
and loop time delay imperfection exist inevitably, which 
must be analyzed. The analysis is based on the accurate 
modeling of the disturbances and uncertainties. In this 
paper, a modern control theory is applied for modeling the 
disturbances, uncertainties, and for analyzing the closed 
loop system robust performance. 

                       1  INTRODUCTION 
      The Spallation Neutron Source (SNS) Linac to be 
built at Oak Ridge National Laboratory (ORNL) consists 
of a combination of low energy normal conducting (NC) 
accelerating structures as well as higher energy 
superconducting RF (SRF) structures. The purpose of RF 
system modeling is to investigate the various cavity 
configurations in order to provide the correct requirements 
for the control system hardware and to specify RF 
components; verify system design and performance 
objectives; optimize control parameters; and to provide 
further insight into the RF control system operation.  
     In a linear accelerator RF system, there are several 
sources of the uncertainties and the disturbances.  For a 
klystron, the major disturbance source is the high voltage 
power supply (HVPS) ripple. This disturbance affects 
both the output amplitude and the output phase of a 
klystron. For a SRF cavity, the major disturbances on the 
cavity characteristics are the Lorentz Force Detuning and 
the microphonics. Also, the changes of RF parameters 
should be investigated and be included in the model.  In 
the low level RF control system, many RF components are 
used and these components are not ideal and have their 
own uncertainties and latencies. Also, feedback loop time 
delay, waveguide time delay, and other time delays are 
modeled.   All of these uncertainties, disturbances, and 
time delays, are modeled as either multiplicative 
uncertainties, additive uncertainties, or exogenous 
disturbances [1].  
    For the perturbed system model, low level RF 
controllers are synthesized by applying modern control 
theory such as 2H control, ∞H  control, loop shaping 
control, and ∞H  based PI control. Closed loop system 
stability and performance are analyzed. 
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              2  KLYSTRON MODEL 
     A klystron can be expressed as the cascade of the 
linear subsystem and the nonlinear output subsystem. The 
linear subsystem represents the 3dB bandwidth of the 
klystron and the constant gain. The nonlinear output 
subsystem represents the amplitude saturation curve and 
the phase saturation curve of the klystron.   The nonlinear 
model of a klystron depicts the nonlinear amplitude 
saturation curve and the nonlinear phase saturation curve 
of a klystron. However, the nonlinearity hinders the 
application of the modern linear control theory both for 
analysis and synthesis. In order to achieve efficient 
analysis and synthesis for a klystron, and for the cascade 
of the klystron and cavity in the linear accelerator, a linear 
klystron model around each operating point is required 
where the operating point is determined by the required 
power of the cavity.  A linear parameter varying klystron 
model can be obtained when the amplitude and phase 
saturation curves are represented by analytic functions, 
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, where A  is the normalized input 

voltage and Ni ,,2,1 �= ic , id , Ni ,,2,1 �=  are 
coefficients and an analytic function is introduced to 
express the operating point trajectory. The linear 
parameter varying klystron model can catch the transient 
behaviors in the period of cavity filling and in the period 
of beam loading. In order for that to be possible, it is 
necessary to continuously measure or estimate the 
trajectory of the output point ),( outoutV θ  of a klystron, 
which is a difficult task.  Instead, an operating point dA  is 
considered and the transfer function matrix model is 
obtained. The linearized klystron model is given by the 
following 2nd order system, 
       ( ) kkdkko BAsIACsG 1)()( −−= ,             (1) 
where dA  is the desired operating input voltage for the 
normalized amplitude saturation curve obtained from the  
desired operating output of a klystron ),( d

out
d

outV θ . The 
model (1), is a hybrid model since the input-state equation 
is adopted from a linear parameter varying model and the 
state-output equation is adopted from a Lyapunov 
linearization. The model (1) depicts a klystron with a 
wider dynamics area than a Lyapunov linearization but a 
narrower area than a linear parameter varying model. 

      3  PERTURBED KLYSTRON MODEL 
     The major perturbation of a klystron�s output is due to 
the high voltage power supply (HVPS) ripple. HVPS 
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ripple changes both the amplitude and the phase of the 
klystron output.  This results in perturbation of both the 
In-phase and Quadrature outputs of the klystron. Hence, a 
perturbed klystron due to HVPS ripple can be represented 
by a nominal system with exogenous disturbance. In this 
case, a proper transfer matrix from the HVPS ripple to the 
klystron output should be obtained. 
     The perturbed output voltage due to the HVPS ripple is 
expressed in terms of ( ) 25.11 RAA Ap ∆+=  where A∆  is the 
amplitude perturbation in percentage and ℜ∈R ,  1≤R ,  
is the normalized ripple signal. The effect of HVPS ripple 
on the output phase of the klystron is described by two 
terms: the first is the perturbed output of the phase 
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, and the second is 

the direct additive phase perturbation, RP∆ . Then the 
perturbed klystron model is defined as an additive 
uncertainty model: 
     ),,()()()()( PARRipplekokokP AsWsGsGSG ∆∆∆+=  (2) 
where )(sWRipple is a frequency-shaping weighting function 

matrix and R∆ is a uncertainty matrix satisfying 1
2

≤∆ R .  

                  4  SRF CAVITY MODEL 
The modeling of a SRF cavity is based on the 

assumption that the RF generator and the cavity are 
connected by a transformer. The equivalent circuit of the 
cavity is transformed to the equivalent circuit of a RF 
generator with a transmission line (waveguide) and the 
model is obtained [2]. The minimal realization of a SRF 
cavity is given by the second order system 
    )()()()()( sIsGsUsGsY Bc +=   (3) 
where  
    zLzzc BAsICsG 1))(()( −∆−= ω ,  (4) 

   zILzzB BAsICsG 1))(()( −∆−= ω .  (5) 
Meanwhile, the Lorentz Force Detuning is written as       
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Equation (3) shows that from the perspective of a cavity, 
beam current is an exogenous disturbance. Also, the 
coefficients of the transfer matrix are dependent upon the 
Lorentz Force Detuning   Lω∆  

      5  PERTURBED SRF CAVITY MODEL 
The SRF cavity model given by (5) is a perturbed 

model where the perturbation is due to the Lorentz Force 
Detuning.  The nominal SRF cavity model is given when 

Lω∆  is  zero. Microphonics, MCPω∆  contribute a similar 
perturbation 

Another dominant perturbation in the SRF cavity 
model is due to the external Q, extQ .  Since exto QQ >>  in 
the SRF cavity, extL QQ ≈  and the coupling factor β  

( β >>1) is given by 
ββ

oo
L

QQQ ≈
+

=
1

. Hence, the 

perturbation of extQ  is equivalently described by the 
inverse of the perturbation of the coupling factor β . Let 

oβ  represent the nominal value of the coupling factor.  
Then a multiplicative perturbation of β  is expressed as 

                     )1( βδββ += o          (7) 

where 0.1≤βδ  represents the degree of the perturbation.  
     The input-output SRF cavity model with perturbation 
can be represented by a linear fractional transformation 
(LFT) [3]. First, let the input-output relation of the 
perturbed system be expressed as a transfer function 
matrix SRFG .   

    �
�

�
�
�

�
=�

�

�
�
�

�

u
w

G
y
v

SRF ,    (8)  

    vw SRF∆= ,    (9) 
          [ ]{ }ℜ∈∆∆=∆ iMCPLSRF IIIdiag δωωδβ :,, 222  

            �
�

�
�
�

�
=

1112

2122

SRFSRF

SRFSRF
SRF GG

GG
G .   (10) 

The upper linear fractional transformation (LFT) 
representation of a perturbed SRF cavity is   
  uGFy SRFSRFU ),( ∆=    (11) 
where

( ) 21
1

2212),( SRFSRFSRFSRFSRFSRFSRFU GGIGGF −∆−∆=∆  

11SRFG+ .    (12) 
This is indicated in Figure 1. 
 
 
 
 
 
 
 
 

Figure 1: Perturbed SRF cavity LFT representation 

              6  OTHER UNCERTAINTIES 
The analog signals in the cavity are fed back to the 

control system digital signal processor for several 
purposes such as low level RF control signal generation, 
data display, and data storage.  RF components such as the 
RF switch, directional coupler, mixer, I/Q demodulator, 
preamplifier, bandpass filter, and transformer comprise 
that feedback loop. Since these components are not 
perfect, there are amplitude distortions and phase 
distortions.  These distortions are characterized in the 
frequency domain. Meanwhile, there exist uncertainties in 
the forward path from the digital signal processor output 
to the klystron.  In this forward loop, RF components such 
as the I/Q modulator, low power amplifier, bandpass filter, 
medium power amplifier, directional coupler, and switch 
are placed and these components inevitably generate 
amplitude distortions and phase distortions. Also, there is 
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significant time delay due to the feedback cable delay and 
certain RF components (e.g.: FIR filter).The uncertainty in 
the RF components in the feedback loop, forward loop, 
and the time delay are modeled as the multiplicative 
uncertainty 
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where A∆  is the multiplicative amplitude pertubation,  

θ∆ is the additive phase perturbation, )(sW  is the 
weighting function matrix, and ),( θ∆∆∆ A  is the 
uncertainty block satisfying  1),( ≤∆∆∆

∞θA ,  ω∀ . 

           7  APPLICATIONS 
The perturbed klystron, cavity, and other 

perturbations are integrated together and result in a 
perturbed open loop system.  The effect of the 
perturbation on the closed loop system performance is 
analyzed with a PI feedback controller given by 
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      First, HVPS ripple effect is analyzed [1]. The 
magnitude response from HVPS ripple to the tracking 
error when amplitude ripple is 1.2% and the phase ripple 
is 11.75 degrees is shown in figure 2. Figure 2 shows that 
there is an upper limit from below and lower limit from 
above in the frequency of the HVPS ripple which 
guarantees the robust performance.  Figure 2 shows that 
the ripple of the frequency range [5903.9 Hz  35966 Hz] 
cannot be rejected with the given PI controller.  
     When a system is perturbed, additional energy should 
be provided by an energy source. In the frequency 
domain, the additional power can be estimated by the 
magnitude response for the worst case perturbation.  The 
LFT representation of a perturbed system or the standard 
form of a multiplicative uncertainty are suitable tools for 
energy interpretation. For a stable transfer matrix )(sG , 
the ∞H  norm is defined as the input/output RMS energy 

gain,  i.e.,  for 
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where 2L  is the space of signals with finite energy .  For a 
fixed frequency 1ω , the maximum singular value of 

)( 1ωjG  is the largest energy gain at the frequency 1ω .  In 
order to calculate the power margin required for the 
Lorentz Force Detuning whose value at the end of 1.3 

secm  RF pulse is �165 Hz (68.75% of )1.142.1 2×− , 
( )),((max SRFSRFU jGF ∆ωσ  is calculated with 

[ ]{ }ℜ∈∆=∆ iLSRF Idiag δω :0,,0 222 , which is shown in 
figure 3. The nominal system�s singular value is 1.9362, 
which changes to 1.7562 due to the system perturbation 
resulting from  the Lorentz Force Detuning (-165 Hz). In 

order to recover to its nominal value, 9.3 % additional 
energy is necessary at low frequency.  In the case of the 
closed loop system, the additional energy is scaled by 
0.5225 (as given in figure 4), and the additional energy is 
4.9% [1], [4]. 
 
 
 
 
 
 
 
 
 
 
Figure 2: Transfer Matrix from the scaled High Voltage Power Supply 
(HVPS) ripple to the tracking. 
 
 
 
 
 
 
 
 
 
 
Figure 3: Maximum singular value plot of the open loop nominal system 
and the open loop perturbed system for a SRF cavity. 
 
 
 
 
 
 
 
 
 
 
Figure 4: Maximum singular value plot of the scaling transfer matrix 

)()( sSsC : )(sC  is the transfer matrix of the PI feedback controller 
and )(sS  is the sensitivity matrix. 
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