
A FLEXIBLE AND CONFIGURABLE SYSTEM TO TEST ACCELERATOR
MAGNETS

J.M.Nogiec, J.DiMarco, H.Glass, J.Sim, K.Trombly-Freytag, G.Velev, D.Walbridge,

 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Abstract
Fermilab’s accelerator magnet R&D programs,

including production of superconducting high gradient
quadrupoles for the LHC insertion regions, require
rigorous yet flexible magnetic measurement systems.
Measurement systems must be capable of handling
various types of hardware and extensible to all
measurement technologies and analysis algorithms. A
tailorable software system that satisfies these
requirements is discussed. This single system, capable
of distributed parallel signal processing, is built on top
of a flexible component-based framework that allows
for easy reconfiguration and run-time modification.
Both core and domain-specific components can be
assembled into various magnet test or analysis
systems. The system configured to comprise a rotating
coil harmonics measurement is presented.
Technologies as Java, OODB, XML, JavaBeans,
software bus and component-based architectures are
used.

1 INTRODUCTION
The challenges encountered by R&D programs

typically require very flexible solutions. In the special
case of accelerator magnet development, flexible
magnetic measurement systems have to be built. Such
systems must be capable of employing various
measurement techniques and analysis algorithms while
using diverse hardware configurations. Such
requirements create conditions that are ideal for
software reuse practices but also demand great
flexibility.

Software reuse can be characterized by the ability to
use the same software modules or designs over and
over again. Software flexibility, in contrast to reuse,
allows for easily changing the overall functionality or
performance of the system. When functionality can be
further modified after deployment, we are talking
about software tailoring.

2 FRAMEWORK
Using component-based development, a technology

that employs software modules designed to be used
repeatedly in developing applications, can satisfy both
the need for flexibility and the need for reusability.

Broad reuse requires finer grain, simple components
whereas convenience calls for large, specialized
components. Ideally, reusable components should be

customizable to easily fit the new specific application
scenario.

In order to promote reuse, a component framework
has been developed [1]. This framework deals with
generic aspects pertaining to any application
architecture and has been built from ground up with
components in mind. It offers dynamic linking of
components upon loading and serves as the mediator in
inter-component communications.

The framework offers a software bus communication
architecture where data-driven components
communicate via events. Five categories of events
have been introduced:

• Data events used to pass processed data.
• Control events sent to stimulate required behavior

of components.
• Debug events generated to facilitate debugging

and analysis of the system.
• Exception events that are further classified as

errors, warnings, and significant system events.
• Property events used to inspect and modify

component properties.

Java beans components of various levels of

specialization and reuse are offered. A set of general
purpose (horizontal) components, called core
components, is supplemented by less general,
application domain specific (vertical) components.
These domain specific components group generic
magnetic measurement components and other
modules, unique to various specific applications and
hardware. A total of 48 components have been
developed including:
• Core components.
• Data display components.
• Data analysis components.
• Magnetic measurement components.

The measurement systems are configurable with
help of the application description language (ADL), a
proprietary dialect of XML. ADL has provisions for
describing components and their properties, inter-
component communication patterns (links between
components), and sequences of control events. An
excerpt from a configuration file is shown below:

<!DOCTYPE configuration SYSTEM "ems.dtd">

<configuration version="0.1" title="Display Test XML">

<!-- Component definitions -->
<component id="Generator"
 class="ems.measurement.dataDisplay.SyntheticData">

0-7803-7191-7/01/$10.00 ©2001 IEEE. 1417

Proceedings of the 2001 Particle Accelerator Conference, Chicago

 <property name="delay" value="10000"/>
</component>
<component id="DataDisplay"

 class="ems.core.components.SimpleDataDisplay">
 <property name="title" value="Data Display Component"/>
 <property name="XPosition" value="0"/>
 <property name="YPosition" value="500"/>
 <property name="wrapLines" value="true"/>
 <property name="width" value="400"/>
 <property name="height" value="250"/>

</component>

<!-- Routing information -->
<route type="Data" origin="Generator"
destination="DataDisplay"/>

<!-- Control signals -->
<control signal="init" destination="!"/>
<control signal="start" destination="!"/>

In this excerpt, a data generator component

(Generator) is defined and linked with a data display
component (Display). Various properties are set, then
both components are initialized and started by sending
appropriate control signals to them ("!" means all
components).

3 DEVELOPMENT CYCLE
In the presented system, the traditional development

cycle has been replaced by a new one, which uses a
component-based development technology. In this
technology, systems are assembled from a set of
components without traditional programming efforts
(see Fig. 1). The selected components are adapted to
their roles by setting their properties.

Figure 1: Application development cycle.

Partial definitions of the system, consisting of

several components, can be included in the main setup
file to reduce the complexity of the setup and offer
coarse pseudo-components.

The constructed applications can be further
customized (tailored) at run-time to fulfill specific
users needs and work situations. This is accomplished
with help of the property editor component, as
illustrated in Fig. 2. The modified system configuration
can be stored as an XML file for future use. In
addition, complete configurations are stored together
with data before and after each test.

Debugging and exception reporting mechanisms that
are integrated in the framework and components
support both assembly and testing of applications.
Both mechanisms support fine-grained control of the
amount and type of information that is reported.

A simulator of the data acquisition hardware has
been developed to facilitate configuration, testing, and
verification of data processing setup.

Figure 2: Property editor component.

4 SYSTEM CONFIGURATION
A family of measurement programs has been

constructed using the above-described process. We
will examine a harmonics measurement program
(rotating coil system) to test superconducting
accelerator magnets. The program (see Fig. 3) consists
of the hardware-oriented components (data sources), a
chain of data processing components (data processors),
data visualization components (data presenters),
system status visualization components (i.e. the
memory monitor) and data archival components (data
sinks). Data sources are the Motor, Z Motion Control
and DAQ components. Some of the data processors
include the Drift Correction, Fourier Transform, and
Magnet Harmonics components. Data presenters are
components such as the Plot components and the
Numerical Display. System status components include
the Memory Monitor and Property Controller. Data
sinks consist of database components such as the
OODB and the Error Log and Debug Log components
as shown in Fig. 3.

1418

Proceedings of the 2001 Particle Accelerator Conference, Chicago

Figure 3: Configuration of the harmonics measurement system.

Overall measurement control and monitoring is
provided by the Measurement Control Panel
component. Control signals for data sources are passed
from proxy controlling components to their
implementations on different computers in order to
control such hardware components as the positioning
system, current, and stepping motors.

Data sources are designed as proxies for their
implementations that run under the VxWorks RTOS.
Data collected by a multi-channel integrator set and
DVM are streamed to the Java DAQ proxy component,
together with asynchronous exceptions and debug
messages. From the DAQ component, data is passed
through the sequence of processing components with
some of the intermediate results sent to data presenters
(graphs, tabular numeric displays, and text displays).
Data events with raw data, selected intermediate
results and final results are archived by the permanent
storage component. This archiving component is based
on the ObjectStore PSE Pro object-oriented permanent
repository. In addition, a log of the measurement
history is stored in a file.

5 SUMMARY
The component-based technology proved to be

uniquely suited for development of test and
measurement systems in R&D environments. Using
this technology, a flexible and configurable system has
been developed to test accelerator magnets in order to
help in research studies and development of new
magnet designs.

The measurement system is built on top of a
component-based Java framework. The system is
configurable via XML dialect that describes
components and their connections. Tailoring of the
system can be done at run-time through a property
editor component. Modified configurations can be
saved for future use.
 The presented solution satisfies both flexibility and
reuse requirements typically imposed on R&D
systems.

6 REFERENCES
[1] J.M.Nogiec, J.Sim, K.Trombly-Freytag,
D.Walbridge, “EMS: A Framework for Data
Acquisition and Analysis”, ACAT'2000, Batavia, 2000.

1419

Proceedings of the 2001 Particle Accelerator Conference, Chicago

