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Abstract— For a pulsed LINAC such as the SNS, an
adaptive feed-forward algorithm plays an important role in
reducing the repetitive disturbance caused by the pulsed
operation conditions. In most modern feed-forward
control algorithms, accurate real time system
identification is required to make the algorithm more
effective. In this paper, an efficient wavelet method is
applied to the system identification in which the Haar
function is used as the base wavelet. The advantage of this
method is that the Fourier transform of the Haar function
in the time domain is a sinc function in the frequency
domain. Thus we can directly obtain the system transfer
function in the frequency domain from the coefficients of
the time domain system response.

1 INTRODUCTION
The Spallation Neutron Source (SNS) Linac to be built at
Oak Ridge National Laboratory (ORNL) consists of a
combination of low energy normal conducting (NC)
accelerating structures as well as higher energy
superconducting RF (SRF) structures. The purpose of RF
system modeling is to investigate the various cavity
configurations in order to provide the correct
requirements for the RF control system hardware.  We use
modeling as a way to specify RF components; verify
system design and performance objectives; optimize
control parameters; and to provide further insight into the
RF control system operation.
    In control applications such as iterative learning
feedforward control, the available a priori model
information is often not sufficiently accurate to allow a
prior fixed design that satisfies all the performance
specifications.  In these circumstances, the designer may
reduce the specified performance level, expand additional
efforts to reduce the amount of model uncertainty or
design a mechanism to reduce the amount of the model
uncertainty by using the input-output data.
     The system identification techniques can be divided
into two categories [1]: parametric and nonparametric.
Parametric techniques assume that the functional form of
the system model is known but that the model parameters
are unknown. Nonparametric techniques are necessary
when the functional form is unknown. In this case, a
general family of functional approximators is selected
based on the known properties of the approximation
family and the characteristics of the application.
Therefore, the designer must specify an appropriate family
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of approximators, specify the structure of the
approximators, and estimate the parameter values to
optimize the function approximation.  This paper will
focus on the nonparametric system identification using
wavelet.

2  WAVELET OVERVIEW
     A wavelet is a small wave which has its energy
concentrated in time to give a tool for the analysis of
transient, nonstationary, or time-varying phenomena [2]. It
still has oscillating wave-like characteristics but also has
the ability to allow simultaneous time and frequency
analysis with a flexible mathematical foundation.  In
Fourier series, a signal can be represented by a series
expansion of sinusoids. In the same way,  a signal can be
represented by a series expansion of wavelets.  As in
Fourier series, a discrete-time series expansion is
introduced.
     Consider a vector space V .  If any )(tf V∈  can be

expressed by

∑=
k kk tatf )()( ϕ , (1)

the set of functions )(tkϕ  is called an expansion  set for

the space V  and if the representation is unique, the set is
a basis.  Alternatively, consider a basis set and define a
space V as the set of all functions that can be expressed

by ∑=
k kk tatf )()( ϕ .  This is called the span of the

basis set.
    Define a set of scaling functions which are integer

translates of the basic scaling function )(tφ 2L∈ , namely,

)()( kttk −=φφ , Zk ∈ . (2)

The subspace of 2L  spanned by these translated functions
is defined as

)}({0 tspanV kφ= ,   (3)

for all Zk ∈ .  This means that ∑=
k kk tatf )()( φ  for

any 0)( Vtf ∈ . A two-dimensional family of functions is

generated from the basic scaling function by scaling and
translation by

)2(2)( 2/
, ktt jj
kj −= φφ  (4)

whose span over k is
)}({ , tspanV kj

k
j φ= (5)

For the wavelet expansion, a two-parameter system is
constructed such that the expansion for all Zk ∈ .  This

means that ∑ −=
k

j
k ktatf )2()( φ  for any jVtf ∈)( .

Extending this idea, the following relation is obtained.

     2
21012 LVVVVV ⊂⊂⊂⊂⊂⊂⊂ −− �� .        (6)
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This relation is the requirement of the multiresolution
analysis (MRA) which is frequently used for a signal

approximation. The nesting of the spans of )2( ktj −φ
denoted by jV  is achieved by requiring that 1)( Vt ∈φ ,

which means that if )(tφ  is in 0V , it is also in 1V , the

space spanned by )2( tφ  which implies that )(tφ  is the

solution of

)2(2)()( ntnht
n

−= ∑ φφ ,   Zn ∈           (7)

where )(nh  is the scaling function coefficients to be

solved.
      The important features of a signal can better be
described not by using )(, tkjφ  and increasing j to increase

the size of the subspace spanned by the scaling functions,
but by defining a slightly different set of functions

)(, tkjψ  that span the differences between the spaces

spanned by the various scales of the scaling function.
These functions are the wavelets.   Usually, the scaling
functions and the wavelets are orthogonal.  Orthogonal
basis functions allow simple calculation of expansion
coefficients and have Parseval’s theorem that allows a
partitioning of the signal energy in the wavelet transform
domain. The orthogonal complement of jV  and 1+jV  is

defined as jW .

jjj WVV ⊕=+1 .  (8)

This means that all members of  jV  are orthogonal to all

members of  jW .  In addition, it is required that

for all appropriate Zlkj ∈,, .

From (6) and (8),  the space  2L  is  represented by

�⊕⊕⊕⊕= ++ 201000
2

jjjj WWWVL     (9)

The prototype wavelet functions is given by the form

)2(2)( 2/
, ktt jj
kj −= ψψ        (10)

where j2  is the scaling of t ,  kj−2 is the translation of

t , and  2/2 j maintains the  2L norm of the wavelet at
different scales.  )(tψ  is the solution of

)2(2)()( 1 ntnht
n

−= ∑ φψ ,   Zn ∈        (11)

for some set of coefficients )(1 nh .

 With the scaling function )(, tkjφ  and the wavelet

)(, tkjψ , a signal 2)( Ltg ∈  can be written by

       ∑ ∑ ∑
∞

=
+=

k k jj
kjjkjj tkdtkctg

0
,,0 )()()()()( ψφ    (12)

The first term of the right hand side is the coarsest scale
whose space is spanned by )(, tkjφ  and the second term of

the right hand side is the high resolution details of the

signal )(tg  which is spanned by the wavelets )(, tkjψ .

The coefficients of the expansion (10) are called the
discrete wavelet transform (DWT) of the signal )(tg

which can be calculated by inner products

)(),()( ,0 ttgkc kjj φ= (13)

)(),()( , ttgkd kjj ψ= (14)

For the general wavelet expansion, Parseval’s theorem is

∑ ∑∑∫
∞

=

∞

−∞=

∞

−∞=
+=

0

222
)()()(

j
j

kl

kdlcdttg      (15)

with the energy in the expansion domain partitioned in
time by k and in scale by  j.

3 HAAR WAVELET SYSTEM
     If a scaling function is chosen to have compact support
over 10 ≤≤ t , then the solution )(tφ  of (7) is [3],



 ≤≤

=
otherwise

t
t

0

10,1
)(φ (16)

with only two nonzero scaling function coefficients

2

1
)1()0( == hh , and the wavelet , the solution of  (11)

is
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otherwise
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0

15.0,1
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)(ψ (17)

with only two nonzero wavelet coefficients 
2

1
)0(1 =h ,

2

1
)1(2 −=h . See figure 1. 0V  is the space spanned by

)( kt −φ , the next higher resolution space 1V  is spanned

by )2( kt −φ . As higher values of scale j  are considered,

the space jV  is spanned by )2( ktj −φ  and becomes a

better approximation of arbitrary functions or signals by
finer and finer piecewise constant functions.
     Using only scaling function does not allow the detailed
decomposition of a signal.  For the higher resolution
decomposition of a signal, the wavelet is necessary.  The
basic wavelet of a Haar wavelet system is an oscillating
function which has an average of zero and produces finer
and finer detail as it scaled and translated. For example,
consider the scale 3=j .  Since

                                  223 WVV ⊕= ,

     112 WVV ⊕= ,

     001 WVV ⊕= ,

a smooth signal can be approximated from the basis
elements in
   21003 WWWVV ⊕⊕⊕= . (18)

∫ == 0)(),()(),( ,,,, dttttt ljkjljkj ψφψφ
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Since Haar functions form an orthogonal basis in each
subspace, they can produce an optimal least squared error
approximation to the smooth signal.

Figure 1 Scaling function and wavelet function of Haar Wavelet

4  HAAR WAVELET SYSTEM
APPLICATION

     The open loop low level RF system for a SRF cavity
can be represented by two input two output (TITO)
system  in baseband of  I/Q coordinates. The off diagonal
terms of the input matrix are very small compared to the
diagonal terms [4].  The coupling between I channel and
Q channel is mainly due to the detuning caused by beam
loading, the Lorentz Force Detuning, and microphonics.
In frequency domain, the transfer matrix of the low level
RF system can be represented by
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where )(zH nm , QInm ,, = , is the Z-transform of the

impulse response )(thnm ,  QInm ,, =   from the input

)(tum ,  QIm ,= , to the output )(tyn , QIn ,= . In order

to obtain the system characteristics, system identification
is necessary. Parametric system identification obtains the
coefficients of the transfer matrices )(zH nm , QInm ,, = ,

explicitly and nonparametric system identification obtains
the functional form of system input-output relation which
is usually given by the impulse response )(thnm ,

QInm ,, = .  It is not difficult to obtain the approximate

transfer matrix )(zH nm  from the impulse response data

)(thnm .

      Let )(th be a discrete time impulse response of an

arbitrary input channel to an arbitrary output channel.
Then, it can be represented by Haar approximations in
various resolutions.   Figure 2 shows the impulse response

)(thII  and its Haar function approximations in various

resolutions, where 1024 point sequence )(thII  is obtained

from Matlab/Simulink model of low level RF system with
sampling time 50 nsec.  The numbers of scaling function
coefficients are (32, 64, 128, 256, 512) for j=0,1,2,3,4.
Note that Haar functions are orthogonal basis and can
produce an optimal least squared error approximation to
the smooth signal.  For example, consider j=0. Then,

)(thII is approximated as

            ∑
=

−≈
31

0
00 )()()(

k
II ktkcth φ (20)

where the scaling function coefficients are obtained from
(13) with )()(,0 kttk −= φφ  and shown in figure 3. Z-

transform of both side of (20) yields the approximation of
the transfer function )(zH II .

  ( ) ( )∑∑
=

−

=
=−≈

31

0
00

31

0
00 )()()()()(

k

k

k
II tZzkcktZkczH φφ     (21)

where ( ))(tZ φ  is Z-transform of )(tφ .

Figure 2   Haar function  approximations

Figure 3  Approximation Coefficients in 0V

5 CONCLUSION
     In this paper, Haar wavelet system is applied to
approximate the impulse response of a system. Due to the
characteristics of Haar functions, the approximation of the
transfer function of the system is easily obtained where
the coefficients of the transfer function are the discrete
wavelet transform of the impulse response.
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