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Abstract

The chromatic nonlinearity parameter, �1, has a strong
impact on longitudinal dynamics in the vicinity of transi-
tion [1, 2, 3]. Measurements of the synchrotron frequency
as a function of radius are used to constrain the value of�1.

1 PRELIMINARIES

The lattice parameters �0 and �1 relate the change in
closed orbit path length C with the reference value for the
center of the beam pipe C0 and the fractional momentum
difference between the closed orbit momentum p and the
reference value for the center of the beam pipe p0 via [1, 2,
3]:
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where � = (p� p0)=p0 is the fractional momentum differ-
ence of the closed orbit and reference orbit momenta. To
get the revolution frequency one needs the change in veloc-
ity (�c) between the closed and reference orbits.
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Since � = (u� u0)=u0
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The revolution period is T = C=�c so
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The data are synchrotron frequency versus radius. These
were obtained with the 2GHz Schottky cavity and the val-
ues at the peaks in the synchrotron spectrum correspond to
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small amplitude synchrotron oscillations. Therefore, a lin-
ear expansion of the equations of motion about the stable
fixed point will suffice. Define

�̂ =
p� ps
p0

=
p� p0
p0

� ps � p0
p0

= � � �s (7)

where ps is the synchronous momentum, and let � = T �
Ts be the difference in revolution period between a particle
and the synchronous particle. The experiment was done at
constant magnetic field below transition so:
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where n is the turn number. The synchrotron frequency is
given by
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where h = 360 is the harmonic number. In equation (10)
only !rf , �s and the derivative term vary with radial steer-
ing and they are tightly related since
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: (11)

Taking the logarithm of equation (10), differentiating with
respect to �s, and evaluating at �s = 0 yields

2

fs

dfs
d�s

= 2

�1 +
3

22
0
�0

+O(�0)

1� 1

2
0
�0

� 3
�
�0 � 1=2

0

�
� 1

2
0

: (12)

In equation (12) the O(�0) appearing in the numerator of
the first term on the right are found in equation (6) and are
neglected since they produce a very small correction. Also
the second and third terms on the right of equation (12) are
very small near transition and will be neglected.

2 APPLICATION

The data for the yellow ring and a least squares fit are
shown in Figure 1. The first measurement was at x = 0
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Figure 1: Measured synchrotron frequency versus radial
steering setpoint.

and the second at x = 1mm. Notice that the chronological
order of the measurements went to large then small then
large radius. There are no systematic drifts. An ideal �2

requires 1� errors of 0:046 Hz. The resolution bandwidth
of the spectrum analyzer was 1 Hz and measurements were
made using 11 synchrotron lines (10 fs). The expected
error is �

p
2=(10

p
12) Hz = 0:04 Hz, where the

p
12

comes from a boxcar distribution. The factor of 10 comes
from a span of 10fs and the additional

p
2 comes from the

two independent measurements of synchrotron frequency
at the edges of the 11 line span.

The reference value for the energy was 0 = 20 and both
the horizontal and vertical chromaticities were <�1. As-
sume a bare value of t � 1=

p
�0 = 22:76. Assuming

the frequency steering is accurate at this value of gamma
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; (13)

where R0 = 610:2 m is the reference radius and x is the
horizontal position. From the fit to the data
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Now since
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one obtains the final result

�1 = �1:15� 0:10:

The MAD[4] model of the RHIC ring predicts

�1 = �1:0 for Q0

y = Q0

x = 0

and
�1 = �1:2 for Q0

y = Q0

x = 2:

Given natural chromaticities Q0

x � Q0

y � �30, the results
are in fair agreement with the model.
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