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Abstract 

The transverse stability and broadening of the beam 
turn out to be the most problematic issues in the 
Spallation Neutron Source ring operation. The particle 
simulation code ORBIT, initially written for space charge 
and halo growth studies, now is able to cover a broad 
spectrum of the accumulator ring problems. Here we 
present an implementation of a collective force simulation 
due to impedance elements in the vacuum chamber of the 
ring. 

1 INTRODUCTION  
 ORBIT is a new code developed for the Spallation 
Neutron Source (SNS) project. It includes H- injection 
modelling features needed to simulate realistic injection 
scenarios. As the SNS project will have an intense (~ 
1014), low energy beam (1 GeV) and is concerned with 
keeping uncontrolled losses to ~ 1 part in 104, space 
charge models are provided to calculate beam halo. More 
detailed descriptions on using the code are given in [1]. 
Here we focus on the impedance module. 
   The longitudinal impedance in ORBIT was 
implemented several years ago. It was based on an 
algorithm presented in [2], and uses products of Fourier 
coefficients of the current and the impedances at 
corresponding frequencies to calculate the longitudinal 
kick.  
   The transverse impedance implementation is based on 
the same approach. The complication is that the betatron 
motion has much higher frequency and the harmonics of 
the dipole current consist of the betatron sidebands of the 
revolution harmonics. Also, the number of transverse 
dimensions is two. Therefore the transverse impedance 
requires four times as many arrays and calculations than 
the longitudinal impedance.  

2 GENERAL SCHEME  
In the transverse collective phenomena code, the kicks are 
taken to be delta-functions, which is valid when the 
betatron phase advance over the physical extent of the 
impedance is small. Otherwise the impedance should be 
split into several small pieces, which is valid when the 
communication between pieces is negligible. If this is not 
the case, then a more general Green function approach, 
which is beyond the scope of the present paper, must be 
used.  
   The value of an element�s impedance is passed into 
ORBIT numerically as an argument of the Impedance 
node. To calculate the transverse collective kick, we 

expand the function Ψ, which is the local product of the 
dipole moment and the current, at the position of the 
impedance into series of harmonics, and, multiplying 
them by the corresponding impedance, convert the 
harmonic series into a series for the kick. Since the dipole 
moment is not a periodic function of time, but has a 
betatron phase advance after the revolution period, we use 
the following formula for the "dipole moment times 
current" value: 
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where f1,f2 are periodic functions of time (to be 
determined), ω0 and ωb are the revolution and the betatron 
frequencies, respectively, and Ntot is the total number of 
harmonics considered. The lower index in the sum is 
incremented by one because the fast Fourier transform 
should have even number of harmonics. 
     To determine f1, f2 functions, we assume that the 
collective, as well as the other perturbations, are small. In 
this case the dipole moment after one revolution  
transforms as a betatron coordinate through the Twiss 
parameters α,β and phase advance µ at the impedance 
point, and equals  

)(sin)()sin(cos)( 0 ttTt Ψ ′+Ψ+=+Ψ µβµαµ  
Equating Ψ to the Formula 1 at two times t and at t+T0, 
one obtains the expressions for the two coefficients f1, f2 : 
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where ϕ=ωbt. The coefficients an, bn in Formula 1 are just 
Fourier coefficients of the functions f1, f2, respectively.    
      The change in the horizontal or vertical angle is (see 
e.g. [3]):  
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3 HALO GENERATION DUE TO 
COLLECTIVE FIELD.    
      Consider a coasting beam case with Lorentz energy 
distribution for a constant focusing storage ring and for 
single harmonic impedance. There is special interest in 
this problem. First, we can solve it exactly and check how 
the distribution evolves for all the particles and how the 
beam emittance and halo depends on the intensity (this is 
the main question for systems like the Spallation Neutron 
Source ring since it is directly related to its activation). 
Second, exactly solvable models give an excellent 
opportunity to check the accuracy of numerical methods 
and their predictive abilities.    
    We take the dipole moment D of the particles at each 
point in the form D=A cos (ψ+ωbt), where A and ψ are 
slow amplitude and phase, respectively. Since the 
collective force F is only a small perturbation to the 
betatron motion, it is more convenient to use averaged 
equations. The oscillatory equation D''+ ωb

2D=F/γm 
transforms into (see e.g. [4]): 
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where βf is the beta-function, τ is the new variable equal 
to s/Π, Π is the circumference, N (>>1) is a number of 
turns for averaging. F must be real in this equation. Let's 
take only one harmonic n with D = Re A exp(inω0 (t-
s/v)+iωbt+iϕ), (ψ for (3) equal to ψ=nω0 (t-s/v)+ϕ ) the 
localised force is )(Re)( 00 ωωδ niZDIisseF b +−= ⊥Π⊥ , 
where I is the current, s0 is the position of the impedance 
in the ring, δΠ is the periodic delta function with the 
period Π. After substitution into (3) one gets:  
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where Ds is the slow dipole moment,  Ds = 
Aexp(iψ+iωbt). To obtain the final equation, one has to 
introduce dependence of the Ds on the energy offset 
δ=∆E/E, which just means replacement of the Ds by the 
integral over the energy distribution function g(δ), with its 
total integral equal to 1.  
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Now we transform the full derivative with respect to 
dimensionless time τ into partial derivatives with respect 
to (again) τ and the relative position of particles z1: 
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1 the derivative with respect to the energy is absent because we deal with 
the coating beam and the energy change is equal to zero 
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position z=∆s/Π (∆s is the distance between particles) 
derivative with respect to τ is z'=ηδ/β2 (η is the opposite 
sign slippage factor), and the dependence of Ds on z is 
fixed (for our particular harmonic) Ds = dsexp(i2πnz), 
where ds is part of the slow dipole moment, which 
depends only on time and energy2. To keep the above 
equations simple we assumed ωb doesn't depend on 
energy offset. The addition (for taking the energy 
dependence into account) is straightforward - it requires 
an addition of a linear dipole term in all the equations (3-
6), with a coefficient, proportional to the energy offset 
and ωb energy derivative. After substitution of the dipole 
moment into (6) we have: 
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2
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νπηδ bn+=∆ . The term with νb in the force 

appears because particles� betatron phases change due to 
difference in velocities and the spatial chromaticity equals 
zero ( 0/ =∂∂ δν b , see also footnote (2)). If 

)(
)( 2

0
2

0

δδπ

δ
δ

+
=g , and the initial ds(δ)=1 the solution 

for (7) is: 

∆−−∆

∆−−−∆−

−∆−=

i

i

id s

χ
ττχχ

τ

0

0 ))exp())((exp(

)exp(

,          (8) 

where 2
0

0
||2

β

νπηδ bn +
=∆ . 

 
Figure 1 Simulated (blue) and analytical (red) dipole 
moment versus number of turns. 
 
Figure 1 shows the ORBIT numerical and the analytical 
solutions from (8) for the centroids of one very short 

                                                           
2 for zero impedance ds  ~ exp(i2πηδνb/β2) because even for zero 
chromaticity particles with different energies have different phase 
advance over same! Time because of difference in velocities.  Similar 
phase change appear due to chromaticity. 
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longitudinal slice. The parameters for comparison are the 
following. The lattice has constant beta function, only 
vertical motion has the impedance (for the case shown it 
is equal to 1 MOhm/m). The total length of the ring is 248 
meters, the frequencies are 6.4 (horizontal) and 6.3 
(vertical), the number of protons is equal to 1014. In the 
simulation only particles with up to 10 Lorentz tune 
spreads were considered. The kinetic energy is 1 GeV, 
and the Lorentz energy spread is 0.01 GeV. 
     Equating χ to ∆0 we get the threshold impedance 
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b
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= , which is equal to 1.68 

MOhm/m for n=0.  The numerical runs give threshold 
values of about 1.6 MOhm/m, therefore the values of the 
threshold are within 5 %.  
   Figures 2 gives the comparison of the analytical 
solution (8) and the ORBIT simulation for rms beam size, 
divided by the beta function, (Figure 2, left). One can see 
that the size grows and saturates when the dipole 
oscillations disappear. It is interesting to get the ratio (we 
call it R) of the saturated rms size and rms size for zero 
intensity to see the factor of beam expansion. To get it, 
one has to take the squared real part of expression (8), 
integrate it with the Lorentzian distribution function, 
divide the result by one for zero intensity and take the 
square root of it. The final expression is: 
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ζ depends on current and  δ0 determines the threshold, the 
expression for R could be more conveniently expressed 
via number of particles N and the threshold particle 
number  Nth : 
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The parameter R of the size expansion is valid when we 
have narrow band impedance (for only one harmonic) and 
works only below the instability threshold.  

  
Figure 2. Numerical (blue) and analytic solutions for the 
rms size (left) and fraction of particles (right) with the y-
coordinate larger than 1.5 initial displacement. 
 

    Figure 2, on the right, shows the fraction of particles 
with the vertical coordinate greater than 1.5 times the 
initial displacement. One can see that numerical solution 
gives about 10% larger result both for emittance and halo 
growth. This may be related to the finite longitudinal size 
of the slice (contrary to infinitely short slice in analytical 
solution), or to numerical noise.  
   The Figure 3 shows the vertical phase space of one 
short longitudinal slice. One can see that the simulation 
preserves even small details of an analytical solution, 
showing the ability of the code to give accurate results.  

  
Figure 3.  Phase space after 50 turns. Numerical solution on 
the left shows group of particles within short slice. The 
analytical solution (right) represents infinitely small size 
and is less fuzzy. 

4 CONCLUSION 
    The SNS simulation code ORBIT was expanded with 
the capability to deal with transverse collective fields. It 
shows good agreement with the exactly solvable models 
for the transverse instabilities.  
    A new effect (from well-known Landau solutions for 
the Vlasov equation) was found. The large halo grows 
because of the collective fields, which transform initial 
displacement into a beam size, even if the intensity is well 
below the threshold.  

5 ACKNOWLEDGMENTS 
   The authors thank A. Shishlo and J. Wei for the help 
and interest in the work.  Research sponsored by the 
DOE, under contract no. DE-AC05-00OR22725with UT-
Batelle, LLC for ORNL  

6 REFERENCES 
  [1] J. Galambos, et al, "ORBIT � a Ring Injection Code 
with Space Charge", PAC 99, New York, 1999. 
  [2] J.A. MacLachlan, "Longitudinal Space Tracking with 
Space Charge and Wall Coupling Impedance", FNAL 
TechNote, FN-446, February (1987). 
  [3] Chao, "Physics of Collective beam Instabilities", 
John Wiley & Sons, Inc. (1993) p.69 
  [4] V. Migulin et al, "Osnovy teorii kolebaniy", Nauka, 
Moscow  (1988) in Russian  
 

1754

Proceedings of the 2001 Particle Accelerator Conference, Chicago


