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Abstract

The second order formula for the chromatic aberration of
the betatron function of a circular accelerator is derived by
means of the perturbative method. We confirm the validity
of the formula for the chromatic aberration of the betatron
function by comparing the numerical calculation with the
measurement at the SPring-8 storage ring.

1 INTRODUCTION

The chromaticity control is very important ingredient in
the operation of a high energy ring accelerator. The strong
nonlinear magnetic field is then necessary to correct the
large chromaticity, which inevitably enhances the nonlin-
earity of the beam dynamics of the circular accelerator.
Hence, for the purpose of precisely controlling the chro-
maticity, one should understand the higher order behavior
with respect to the momentum deviation.

In the preceding paper [1] we derived the higher order
formula of the nonlinear dispersion function of a circular
accelerator by means of the perturbative method. Based on
the formulation the perturbative formula of the nonlinear
chromaticity is derived in [2]. In these proceedings we de-
velop the formulation of the chromaticity to the local one,
i.e. the chromatic aberration of the betatron function. Using
the local information of the chromaticity, one can control
the global one in detail over the wide momentum range.

2 FORMULATION

2.1 Hamiltonian

We describe the motion of a particle in a ring accelerator
by the following Hamiltonian H [1]

H (x, px, y, py)

= − (1 + Kxx)
√

(1 + δ)2 − p2
x − p2

y +
1
2

(1 + Kxx)2

+
∑
n=0

gn

(n + 2)!

[
n
2

]
+1∑

m=0

(−)m

(
n + 2

m

)
xn+2−2my2m,(1)

where δ is the fractional deviation of the momentum δ =
(p−p0)/p0with the nominal momentum p0, Kx is the hor-
izontal curvature, and gn’s are the strengths of multipole
magnets.

To investigate the betatron oscillation around the off-
momentum trajectory, we expand the Hamiltonian with
respect to the momentum deviation δ. Since the off-
momentum trajectory (xε, pε) is expressed by the disper-
sion function and its derivative whose perturbative formula
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is given in [1], the Hamiltonian describing the betatron mo-
tion with momentum deviation δ is
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2.2 Equation of Motion and Transfer Matrix

In [2] we show that the equation of motion of an off-
momentum particle derived from the Hamiltonian (2) be-
comes the following Hill’s equation(
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with z representing x or y and, e.g. for z = x

Ax =
Kxpε√

(1 + δ)2 − p2
ε

, Bx =
(1 + δ)2 (1 + Kxxε)[

(1 + δ)2 − p2
ε

]3/2
,

Cx = −K2
x −

∑
n=0

gn

n!
xn

ε .

The explicit forms of the some higher order terms of the
perturbative expansion of Gz with using the higher order
dispersion function [1] are given in [2].

Since the motion of a particle is described by the Hill’s
equation, we can construct the transfer matrix in terms of
the Twiss parameter as usual. Hence the one turn transfer
matrix over the circumference L is given by

Mz (s0 + L|s0)

=
(

cosµz + αz sinµz βz sin µz

−γz sin µz cosµz − αz sinµz

)
,(4)

where αz , βz and γz are the Twiss parameters and µz the
phase advance defined by

µz =
∫ s0+L

s0

ds

βz (s)
. (5)

In the previous paper [2], by expanding the transfer matrix
M and the phase advance µ on δ as

M =
∑
n=0

δnMn, µ =
∑
n=0

δnµn
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in the fundamental equation TrM (s0 + L|s0) = 2 cosµ,
we derive the perturbative formula for the global chro-
maticity. From now on, we omit the index denoting the
coordinate x or y for the sake of simplicity.

2.3 First Order Formula

Before formulating the second order chromatic aberra-
tion of the betatron function, we reexamine the first order
case in our formulation. Using the first order term of the
impact transfer matrix T, we obtain the (1, 2) component
of the one turn matrix M at the first order

M1 (s0 + L|s0)|12
=
∫ s0+L

s0

ds1M0 (s0 + L|s1)T1 (s1)M0 (s1|s0)

∣∣∣∣∣
12

.

On the other hand, from the (1, 2) component of the matrix
(4), we obtain the representation in terms of the betatron
function

M1 (s0 + L|s0)|12 = β1 (s0) sin µ0 + β0 (s0)µ1 cosµ0,

where β1 denotes the first order modulation of the beta
function β =

∑
n=0 δnβn. The first order phase advance

µ1 has been already known as given in [2, 3, 4]. Hence,
equating the above equations and inserting the explicit form
of T1 into the resultant, we find the integral formula for the
linear chromatic aberration of the betatron function

β1 (s0) = − β0 (s0)
2 sinµ0
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× cos [µ0 − 2ϕ (s1) + 2ϕ (s0)] . (6)

The consistency of the first order formula of the beta-
tron function with the expression of the global chromatic-
ity is proven by the integration over the circumference. By
definition, the first order global chromaticity µ1 should be
represented by β1 as
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∫ L

0

ds0
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Integrating the right hand side of Eq. (7) with the represen-
tation (6), we find

−
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which exactly coincides with the expression of the first or-
der chromaticity ξ1 = µ1/(2π) [2, 3, 4].

2.4 Second Order Formula

The second order term of the (1, 2) component of the
one turn matrix M consists of the two contributions from
the impact transfer matrix T
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The former term corresponds to the second order modula-
tion of the Hamiltonian and the latter indicates the cross
term of the first order impact.

On the other hands, the (1, 2) component of the one turn
matrix M is also represented in terms of the higher order
terms of the betatron function as

M2 (s0 + L|s0)|12 = β2 (s0) sinµ0 + β1 (s0)µ1 cosµ0

+β0 (s0)
(
µ2 cosµ0 − 1

2µ2
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)
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Using the formula for the higher order phase advances µ 1,2

given in [2], we can obtain the representation of the second
order aberration of the betatron function β2

β2 (s0) = − β0 (s0)
2 sinµ0
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×β0 (s1) G1 (s1) {cos 2 [µ0 − ϕ (s2) + ϕ (s0)]
+ cos 2 [ϕ (s2) − ϕ (s1)] + cos 2 [ϕ (s1) − ϕ (s0)]} .

In order to confirm the consistency of the present for-
mula for the local chromaticity with the global one, we
have to check the following defining equality
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0
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[
β2 (s0)
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−
{

β1 (s0)
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}2
]

. (11)

After the lengthy calculation, one can convince oneself of
the validity of these formula.

3 NUMERICAL CALCULATION

3.1 Fourier Transform

In investigating the higher order terms of the global chro-
maticity, we find that the Fourier transform with respect to
a lattice period is an effective measure to numerically in-
tegrate the formula. For example, if defining the Fourier
components of β0G1 for n = 0, 1, 2, . . . as

a1 (n) =
2
µ0

∫ s0+L

s0

ds1 cos
[
2πn

µ0
ϕ (s1)

]
β (s1)G1 (s1)

and b1 (n) for sin
[
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µ0
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]
, we have
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4
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.
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While checking the convergence, we sum up the Fourier
series to the twenty thousand harmonics. It should be
extremely emphasized that the thickness of the sextupole
magnet plays an important role for the convergence of the
Fourier series. Once the Fourier components are calcu-
lated, one can easily sum up the Fourier series at any point
throughout the circumference.

The consistency of the formula for the local and global
chromaticities can be easily verified in the frequency do-
main. The constant term of the chromatic aberration of the
betatron function is just the global chromaticity, since the
oscillating terms disappear after the integration over the cir-
cumference, i.e. one period.

3.2 A Numerical Example

As an example, we evaluate the chromatic aberration of
the betatron function of the SPring-8 storage ring. The stor-
age ring is composed of 44 cells of double bend achromat
and 4 magnet free straight sections of 30 m long, which
eventually possesses fourfold symmetry. The horizontal
betatron function is indicated in Fig. 1. Note that the stor-
age ring is normally operated at (40.15, 18.35) in tune map.
The modulation of the betatron function in the middle of
Fig. 1 corresponds to the long straight section.
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Figure 1: The horizontal betatron function of the SPring-8
storage ring over the quarter of the circumference.
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Figure 2: The first order aberration of the horizontal beta-
tron function of the SPring-8 storage ring.

The first and the second order aberration of the beta-
tron function are shown in Figs. 2 and 3, respectively. The
higher order aberrations, off course, possess the fourfold
symmetry corresponding to the ring symmetry.
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Figure 3: The second order aberration of the horizontal be-
tatron function of the SPring-8 storage ring.

3.3 An Experiment

The betatron function is measured by detecting the tune
shift as the strength of the individual quadrupole magnet
varied. Hence, measuring the betatron function for differ-
ent rf frequency, one can get the chromatic aberration.
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Figure 4: The measured and calculated horizontal betatron
functions of the SPring-8 storage ring as the momentum
deviation varied. The full circles represent the measured
betatron functions and the solid lines the calculated ones.

The measurement of the betatron function is performed
at three different quadrupole magnets situated at down-
stream immediately after the long straight section, whose
data are shown in Fig. 4 by the full circles. The calculated
betatron functions and the higher order aberrations at the
data points are displayed by the full circles in Figs. 1, 2
and 3.

The calculated betatron functions up to the second or-
der aberration are represented by the solid lines in Fig. 4.
Although the discrepancy between the measured and the
calculated betatron functions is somewhat large, the ten-
dencies of the functions well agree on the whole.
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