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Abstract
Nonlinear beam dynamics experiments were

conducted at the Taiwan Light Source (TLS) of the
Synchrotron Radiation Research Center (SRRC). We
employed a turn-by-turn BPM system to obtain
nonlinear dynamics of the excited bunched beam.
Extracted nonlinear parameters are compared with the
simulation results.

1 INTRODUCTION
Nonlinear field is of importance for the design and

operation of circular machines and nonlinear beam
dynamics has been intensively investigated both
theoretically and experimentally [1]. Theoretically,
nonlinear elements are designed on purpose to assist the
operation of the machines e.g., the correction of the
chromatic aberration and/or slow extraction with the
help of sextupole magnets, the enhancement of the
Landau damping with the octupole field, etc. On the other
hand, the existence of the nonlinear components in the
beam line will introduce the nonlinear behavior of the
moving particle, and if the driving source of such
nonlinear field is strong enough, the particle motion could
be so large and lost. In the design stage of the machine
components, the error tolerance of the field ought to be
specified to assure the expected performance of the
machine. In this paper, we employ a turn-by-turn electron
position monitoring system to measure the behavior of the
perturbed particle at the TLS. The simulation results with
the existence of the measured nonlinear field errors are
compared with the extracted parameters from the
experiments.

2 TURN-BY-TURN BPM SYSTEM
We have installed a six-dimensional turn-by-turn phase

space monitoring system at the TLS.[2] This system was
employed to measure the nonlinear particle motion. The
stored beam was perturbed using a horizontal kicker. The
two horizontal BPMs are located at the positions where
the betatron phase advance differs by 90o or so. A
well-developed on-line data analysis and display window
is of help while the experiments are conducted. The
lattice working points were set before kicking the stored
beam by changing the quadrupole field strength. The
coupling in the transverse plane was corrected with skew
quadrupoles. Sextupole strengths were adjusted to the
desired chromaticities, which were near zero. We focus
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on the analysis of the third- and fourth-order nonlinear
strength of the TLS storage ring.

3 EXPERIMENTS AND ANALYSIS
The amplification factor of the measured BPM signal

was calibrated using response matrix of the steered beam
as well as the bench-measured data. The phase advance of
the BPM pair and the phase-space ellipse were obtained
by fitting the BPM data and also compared with the
on-line machine-model calculations. The measured
Poincaré maps are shown in Fig. 2, and 6. The
action-angle φ,(J ) of the fitted data is thus given in Fig.
3, 7, and 9, and the fitted Hamiltonian tori are also
displayed. To get the nonlinear betatron de-tuning
parameters of the machine, we applied a numerical
analysis of the fundamental frequency (NAFF) method to
get the betatron tune. Noted that de-coherence effect of
the bunched beam should be minimized.

The effective Hamiltonian of particle beam motion in
the resonance reference-rotating frame in 1D nonlinear
resonance lm =ν with small action JI = can be
expressed as
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where lm, is integer and ν is betatron tune.[1] The

resonance strength lmGg ,0,= , and energy
~

HE = can

be fitted provided the proximity of tune α and the
de-tuning parameter δ are measured. The fixed points

( ), ffI ϕ of the Hamiltonian are given by
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Hence, the stable and unstable fixed points can be
expressed in terms of δ, α and g for the m -order

resonance.

3.1 Third-order
The ring lattice is a six-fold symmetry

triple-bend-achromat lattice with the designed working
tune around 7.18 and 4.13 in the horizontal and vertical
plane, respectively. The horizontal tune was shifted across
the third-order resonance line with δ=0.0012  before
kicking the beam horizontally. We got de-tuning
 α =-0.0012±0.0001 (π mm mrad)-1 and resonance
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strength =g 2.1�0.5*10-4 (π mm mrad)-1/2. The island

tune becomes ).()2/9(2
sfpsfpisland II αδν −=

Stable and unstable fixed points can be expressed as

||2/)4)5.1(||5.1( 22/1 ααδ−+= ggI
sfp

and

|2/)4)5.1(||5.1| 22/1 ααδ−−= ggI
ufp

. The

measured island tune islandν =0.0017±0.0004 from FFT

of turn-by-turn data as compared with the result from the

above equation islandν = 0.0017±0.0002.

sfpI =1.29±0.06 and ufpI =0.78±0.05 (π mm mrad) from

the equations. From the action-angle data in Fig. 3,

sfpI =1.2±0.1 and ufpI =1.0±0.1 (π mm mrad).
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Figure 1: De-tuning parameter around third-order
resonance line.  α =-0.0012±0.0001 (π mm mrad)-1
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Figure 2: Poincaré map near third-order resonance.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-3 -2 -1 0 1 2 3

A
c
ti

o
n

[p
i

m
m

m
ra

d
]

Angle [rad]

Figure 3: Action-angle near third-order resonance line.
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Figure 4: FFT of the third-order resoance. Island tune is
shown.

3.2 Fourth-order
The horizontal tune was shifted to 7.2538 with

δ=0.0038 and measured de-tuning parameter
α =-0.00113±0.00002 (π mm mrad)-1as shown in Fig. 5.
In the plot, the action is averaged over the angles. It is
found the island width is measurable in the plot. Fitted
resonance strength is =g 4.0±2.0�10-5 (π mm mrad)-1.
The stable and unstable fixed points as well as the small
amplitude island tune for α < 0 case are given as:
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With δ, α and g obtained above, we get sfpI = 3.6±0.1,

ufpI = 3.1±0.1 (π mm mrad) and islandv = 0.0030

(+0.0007, -0.0010). Island tune from the FFT of the
experimental data is 0.002. From Fig.7 of the measured

action-angle, sfpI ≈ 3.2 (π mm mrad).
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Figure 5: De-tuning parameter around fourth-order
resonance line. α =-0.00113±0.00002 (π mm mrad)-1
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Figure 6: Poincaré map near fourth-order resonance.
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Figure 7: Action-angle near fourth-order resonance line.
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Figure 8: FFT of the fourth-order resonance. Island tune
is shown.

3.3 Fifth-order
Fifth–order resonance can be also driven by the

systematically distributed chromaticity sextupoles as
shown in Fig. 9. The initial tune is 7.2095. Measured
island tune is 0.011 and α=-0.00117.
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Figure 9: Measured action-angle on fifth-order resonance.

4 SIMULATION WITH NONLINEAR
FIELD ERRORS

Without nonlinear random errors, the resonance
strengths of the third- and fourth-order in the above
mentioned conditions will be zero due to the cancellation
of the phases in the SRRC lattice. Magnetic field errors
were measured in terms of harmonic contents at the
operational energy before installing into the ring beam
line. Other than skew components, all these errors are put
into the simulation code MAD. Due to the lack of the real
corresponding error distribution of the magnets, random
error distribution along the ring was generated using the
measured field statistics. The nonlinear betatron de-tuning
parameters contributed from the sextupoles (chromaticity
sextupoles and sextupole components of all magnets
including insertion devices) near the third-, fourth- and
fifth-order resonance are -0.0012, -0.0016, -0.0018 (πmm
mrad)-1, respectively, and are -0.0011, -0.0014, -0.0017
for those without errors. Noted that in the simulation,
wiggler magnet is turned on. It shows that other higher
order nonlinear terms do contribute substantially to the
de-tuning effect. It was found that the octupole random
errors in quadrupoles needed increase by a factor of 4 to
get reasonably reproduced fourth-order resonance
strength. This might be due to the inability in reproducing
the exact random octupole field distribution in the
simulation or the octupole components in quadrupoles
were under-estimated. The de-tuning parameters, the
resonance strengths, the island tunes are listed in Table 1.

5 CONCLUSION
In this study, we found that the non-linear beam

dynamics in the transverse plan can be measured and

compared with the simulation results. The measured data
in third-order and fourth- as well as fifth-order resonance
lines are reasonably reproduced using MAD simulation
code, in which measured field errors are included.
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Table 1: Simulated parameters with error inputs.
Third-order Fourth-order

α -0.00088 -0.00128
g 6e-4 7e-5

νisland 0.0013 0.002
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Figure 10: Third-order resonance tracking in the
horizontal plan with measured field errors using MAD

program. Initial tune is 7.3344.
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Figure 11: Same set of field errors as in Fig. 10 for the
fourth-order resonance map. Initial tune is 7.2538.
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Figure 12: Simulated action-angle near fifth-order
resonance. Initial tune=7.2095.
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