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Abstract

The passage of a charged particle through a region of
nonvanishing electromagnetic fields (e.g., a bending mag-
net, multipole magnet, spectrometer, electrostatic lens,
electromagnetic velocity separator, etc.) can be described
by a transfer map [1]. In the magnetic case, computation of
this map in canonical coordinates requires a knowledge of
the vector potential and its multiple derivatives within the
region. This information is shown to be calculable from
boundary data with the aid of Helmholtz’s theorem and
a novel application of the Dirac monopole vector poten-
tial. This can be done without solving Laplace’s equation
within the region, a generally formidable problem. Using
the methods to be described, modules could be added to
existing electromagnetic codes that would produce reliably,
when requested, associated transfer maps to any desired or-
der for arbitrary static charged-particle beamline elements.

1 INTRODUCTION

Look at the volume V ′ shown below. It consists of a bent
rectangular box flanked by straight arms. As illustrated,
this volume is suitable for enclosing a reference trajectory
through a bending magnet. The bent box encloses the bent
part of the trajectory produced by the main bending field,
and the straight arms enclose the entering and exiting parts
of the trajectory in the fringe-field regions. Suppose all
3 components of the magnetic field B are known on the
surface (boundary) S ′ of the volume (either as a result of
direct measurement or from running some 3-dimensional
electromagnetic code). This paper describes how the trans-
fer map M for trajectories through such an element can be
calculated from this boundary data.

Figure 1: A volume V ′ surrounding a reference trajectory
for a bending magnet.
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2 MOTION IN A STATIC MAGNETIC
FIELD

The methods of this paper can be applied to both static
electric and static magnetic fields, and combinations of the
two. For purposes of exposition, we will consider the case
of magnetic fields.

In Cartesian coordinates and with the time t as the inde-
pendent variable, the Hamiltonian H for motion of a parti-
cle of charge q in a magnetic field is given by the relation

H = [m2c4 + c2(p − qA)2]1/2. (1)

Here A is the vector potential associated with the B field
by the relation B = ∇× A.

For the purposes of generating maps it is more conve-
nient to use one of the coordinates, say the z coordinate,
as the independent variable and to treat the time t and its
canonically conjugate momentum pt as dependent vari-
ables. With this choice of phase-space coordinates, the
Hamiltonian K for motion in a magnetic field is given by
the relation [1]

K = −[p2
t/c2−m2c2−(px−qAx)2−(py−qAy)2]1/2−qAz.

(2)
Replace the symbol z by τ in (2), and let the symbol z

now denote the collection of phase-space variables

z = (x, px, y, py, t, pt). (3)

Let zd be the design (reference) trajectory and introduce
deviation variables ζ by the rule

z = zd + ζ. (4)

Suppose K[zd(τ) + ζ, τ ] is expressed as a power series in
ζ by writing the expansion

K[zd(τ) + ζ, τ ] =
∞∑

m=0

Km(ζ, τ) (5)

where each quantity Km(ζ, τ) is a homogeneous polyno-
mial of degree m in the components of ζ. It can be shown
that the design orbit is determined by K1, the linear part
of the transfer map about the design orbit is determined by
K2, and the higher-order (nonlinear) parts of the transfer
map are determined by the Km with m ≥ 3 [1]. Evidently,
determination of the Km requires a knowledge of A and its
multiple derivatives.
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3 CALCULATING THE VECTOR
POTENTIAL FROM BOUNDARY DATA

Assume that B is divergence and curl free within V ′.
With the aid of Helmholtz’s theorem, the use of Dirac’s
magnetic monopole vector potential, and various vector
identities, it can be shown that A has the representation

A = An + At, (6)

where

An(r) = (1/4π)
∫

S′
[n(r′) · B(r′)]Gn[r; r′, n(r′)]dS′,

(7)

At(r) = (1/4π)
∫

S′
Ψ(r′)Gt[r; r′, n(r′)]dS′. (8)

Here Gn and Gt are the kernels

Gn(r; r′, m) =
m × (r − r′)

[|r − r′| − m · (r − r′)]|r − r′| , (9)

Gt[r; r′, n(r′)] = n(r′) ×∇′ 1
|r − r′| . (10)

The vector n is the outward normal to S ′, and Ψ is the
scalar potential such that B = ∇Ψ in V ′ [2, 3, 4]. Note
that An depends only on the normal component of B on
S′, and At depends only on the tangential component of
B on S ′. (The value of Ψ on S ′ can be determined by line
integrals of the tangential component of B on S ′.) Note
also that A has been calculated from boundary data without
having to solve Laplace’s equation in the domain V ′.

4 IMPLEMENTATION AND
EXPECTATIONS

Evidently the kernels Gn and Gt are analytic in the com-
ponents of r for r ∈ V ′ and r′ ∈ S′. Therefore Gn

and Gt can be expanded in convergent Taylor series using
Truncated Power Series Algebra (TPSA) methods [1], and
the integrals (7) and (8) can be evaluated numerically to
yield corresponding convergent Taylor Series for A n and
At. These Taylor series may then be employed in (5) to
yield, again using TPSA, the polynomials Km. Finally,
by already established methods, these polynomials can be
used to determine the design orbit z d and the transfer map
M about this orbit [5, 1].

It can be shown, as a result of the properties of Gn and
Gt, that the representation (6) satisfies the desirable rela-
tions ∇ · A = 0 and ∇× B = ∇ × ∇× A = 0 no mat-
ter what the values of B and Ψ are on S ′, and no matter
how poorly the integrals are evaluated (say numerically).
In addition, the kernels Gn and Gt are smoothing. Conse-
quently, we expect that the accuracy of the resulting design
orbit and associated transfer map will be relatively robust
against errors in the surface data [6, 7].

Developmental numerical code has been written to test
the methods just described, and it has been verified that the

method works to high accuracy for various special cases for
which the design orbit and transfer map can be computed
by other means. Work is currently in progress to examine
in detail to what extent the method is indeed robust against
errors in the surface data, and to write efficient production
code including code for parallel processors.

5 CONCLUSIONS

A new method has been developed for the computation
of charged-particle transfer maps for general fields and ge-
ometries based on the use of surface (boundary-value) data.
The method requires a knowledge of all 3 field compo-
nents on the surface (or, equivalently, the value of the nor-
mal field component and the scalar potential on the sur-
face). These surface values are convolved with explicitly
known and geometry-independent kernels to produce in-
terior fields. The kernels themselves are obtained by the
use of Helmholtz’s theorem and Dirac magnetic monopole
vector potentials. The resulting interior fields satisfy the
Maxwell equations exactly and are analytic functions of
position even if the surface data contains errors and/or the
convolutions are only performed approximately. The re-
sulting transfer maps are expected to be optimally robust
against computational and/or measurement errors. Using
these methods, modules can be added to existing numerical
electromagnetic field-solving codes that would produce re-
liably, when requested, design orbits and associated trans-
fer maps to any desired order for arbitrary static charged-
particle beamline elements.
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