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Abstract

The frequency dependence of the longitudinal beam
transfer function (BTF) in a storage ring, when expressed
in a basis of azimuthal harmonics of the line density, is
the Fourier transform of a causal function that depends
on the radio-frequency potential well in which the bunch
moves. The effect of all synchrotron harmonics are in-
cluded in this function, which is derived from Krinsky and
Wang’s expression for the BTF expressed in the same ba-
sis (S. Krinsky and J.-M. Wang, Part. Accel. 17, 109-139
(1985)). Analytic properties of the terms of the BTF ex-
pressed in a series of synchrotron harmonics, which are
approximately Shaposhnikova’s BTF matrix elements (E.
Shaposhnikova, CERN Report No. SL-94-19-RF (1994)),
are studied through the large-argument asymptotics of cor-
responding causal functions.

1 INTRODUCTION

Krinsky and Wang (K & W) developed an expression for
the longitudinal beam transfer function (BTF)Gmn(Ω) in
a storage ring, which is the frequency-domain response of
a bunch to atotal-voltage excitation obtained by an inver-
sion procedure applied to the Vlasov equation [1]. Their
expression is valid for radio-frequency (rf) potentials with
monotonic synchrotron frequencies and is expressed in a
basis of azimuthal harmonics. It also serves as a basis for
derivation of part of Shaposhnikova’s explicit formulation
of the BTF and her BTF matrix elementsMmn

µ (Ω) [2], the
latter obtained through the use of Lebedev’s synchrotron-
harmonic expansion [3].

Although Krinsky and Wang’s expression has a singular
denominator that is difficult to work with directly, it per-
mits insertion of a series expansion for a singular denom-
inator that results in an expression forGmn(Ω) (Gmn(Ω)
relates excitations near thenth revolution harmonic to the
beam’s response near themth revolution harmonic) with
frequency dependence that is the Fourier transform of a
causal functionhmn(t) determined by the single-particle
dynamics. A similar procedure can be applied toM mn

µ .
This function is readily calculated and provides a numerical
method, when inserted into dispersion relations, by which
coherent frequencies including all synchrotron harmonics
may be calculated in one step (Sec. 2).

What is also interesting is that, since the analytic proper-

∗Email: towne@bnl.gov
† Work performed under the auspices of the U.S. Department of En-

ergy, under contract DE-AC02-76CH00016.

ties of the Fourier transform of a functionf(t) are closely
linked to thet→ ∞ asymptotics off , an assessment of the
analytic properties ofGmn through the asymptotics ofhmn

may be made, at least numerically. Stronger statements are
developed for the functionsMmn

µ (Ω) where the expression

for M̃mn
µ (t) is also an integral transform but now with an

exponential kernel. If a suitable change of variable of in-
tegration can be made, the integral transform is a Fourier
transform and thet → ∞ asymptotics is closely related to
the differentiability properties of the object of the integral
transform representing̃Mmn

µ (t). A sufficient condition un-

der which thet → ∞ asymptotics ofM̃mn
µ (t) is exponen-

tially decreasing, requiringMmn
µ (Ω) to be regular forΩ on

the real axis, is derived (Sec. 3).

2 FOURIER TRANSFORM EXPRESSION
FOR THE BEAM TRANSFER

FUNCTION

First take a moment to become familiar with the nota-
tion used here. The phase-space variablesJ and θ are
the action-angle canonical variables with respect to the
radio-frequency (rf) Hamiltonian. The variableφ is the
co-moving coordinate related to the azimuthal angleψ
throughψ = ω0t + φ, whereω0 is the revolution fre-
quency. There is a variablep canonically conjugate toφ.
The rf Hamiltonian isH = H(J) and the rf potential is
Urf = Urf(φ). In terms ofφ andp, H(J) = H(φ, p) =
p2/2 +Urf(φ). The synchrotron frequencyωs is a function
of J andTs(J) = 1/ωs(J). The static particle distribution
in phase space isΨ0(J) ∝ e−H/σ2

, whereσ = αω0σε,
α is the momentum compaction, andσε is the fractional
energy spread of the ring. Krinsky and Wang’s BTF is
expressed asFmn = −Gmn/κ in their notation, where
κ = eαω3

0/4π
2E0 andE0 is the nominal particle energy.

The K & W expression forFmn(Ω) is an integral,

Fmn(Ω) =
1
in

∫ ∞

0

dJ
Ψ′

0(J)
ωs(J)(1 − eiΩTs(J))

×
∫ 0

−2π

dθ′e−iΩTsθ′/2π∂θ′gmn(J, θ′)(1)

where

gmn(J, θ′) =
∫

2π

dθ e−i(mφ(J,θ)−nφ(J,θ+θ′)) (2)

The series1/(1− eiΩTs(J)) =
∑∞

l=0 e
iΩlTs , which is valid

for Ω with positive imaginary part, is inserted into Eq. (1).
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The terms of the series are then combined with the integral
with respect toθ to extend the lower limit of integration
to −∞, the variable of integrationθ ′ is changed toτ ′ =
θ′/ωs(J), and the derivatives ofΨ0 andgmn are combined
into the scalar Poisson bracket{gmn,Ψ0}.

Fmn(Ω) =
1
in

∫ ∞

0

dJ

∫ 0

−∞
dτ ′ e−iΩτ ′ {gmn,Ψ0} (3)

Even thoughτ ′ was originally defined as dependent upon
J , the semi-infinite limits of integration permit this to be
ignored and the order of integration to be interchanged.
Changing variable of integration fromτ ′ to τ = −τ ′, we
have the one-sided Fourier transform

Gmn(Ω) = −κFmn(Ω) =
1
in

∫ ∞

0

dτ eiΩτhmn(τ) (4)

where

hmn(τ) = −κ
∫ ∞

0

dJ {gmn,Ψ0} (5)

and theθ dependence of the Poisson brackets is through
θ = ωs(J)τ ′ = −ωs(J)τ .

A simpler approximate expression forhmn is obtained
by inserting the familiar Bessel-function substitution in
place of the Fourier coefficients of the exponential

einφ(J,θ) =
∞∑

µ=−∞
Fµ(n, J)eiµθ (6)

�
∞∑

µ=−∞
iµJµ(nr(J))eiµθ (7)

wherer = r(J) is the radial variable that is the maximum
value ofφ on the trajectory with action variableJ andJµ is
the Bessel function of the first kind. Eq. (7) is then substi-
tuted into Eq. (2). A Bessel-function identity is employed
to get

gmn(J, θ) � 2πJ0(r(J)Rmn(θ)) (8)

whereRmn(θ) =
√
m2 + n2 − 2mn cos θ. Inserted into

Eq. (5),hmn is much more easily computed using Eq. (8)
than when using the exact Eq. (2).

Numerical evidence thatGmn(Ω) is analytic was found
using the approximate Eq. (8) and Eq. (5). As was noted
earlier, theτ → ∞ asymptotic behavior ofhmn(τ) deter-
mines the region of the complex plane over whichGmn(Ω)
is regular. In particular,Gmn is regular on the real axis if
hmn is bounded by a decaying exponential with increas-
ing τ . In the case of the modelUrf(φ) = bφ4/4 poten-
tial approximating the potential used to stretch bunches,
numerical calculation shows thathmn(τ) of Eq. (5) with
the approximate Eq. (8) inserted decreases in magnitude
at least as fast as exponentially to∆ωsτ = 80 where
the dimensionless integral has magnitude of order10−35

(∆ωs = 0.849(4bα2ω2
0σ

2
ε )1/4). Consequently,Gmn, as

defined with the approximate form Eq. (8), is likely regular
on a half plane of theΩ plane containing the real axis. The
numerical data also suggest that the decay is faster than

exponential, implying thatGmn is an entire function of
Ω. Contrast this behavior to the general quartic potential
Urf(φ) = ω2

s0φ
2/2 + bφ4/4, whereωs0 andb are nonzero

constants; in this case the oscillatoryhmn(τ) decreases as
τ−2. Consequently,Gmn(Ω) has singularities on the real
axis in this case.

3 SHAPOSHNIKOVA’S BTF MATRIX
ELEMENTS

Shaposhnikova developed a representation ofGmn in a
series of matrix elementsMmn

µ (Ω) in synchrotron harmon-
ics [2] that is closely related to Lebedev’s dispersion rela-
tion [3]. It may be derived by first inserting Eq. (6) into Eq.
(2) with the result

gmn(J, θ) = 2π
∞∑

µ=−∞
F ∗

µ(m,J)Fµ(n, J)eiµθ (9)

This series is inserted into Eq. (5), the order of integration
and summation is interchanged, and individual terms ex-
tracted. The result is

hmn(τ) = −κ
∞∑

µ=1

M̃mn
µ (τ) (10)

where the terms are

M̃mn
µ (τ) = 2πiµ

∫ ∞

0

dJ Ψ′
0(J)

×
∑
±

±F ∗
±µ F±µ e

∓iµωsτ (11)

Them, n, andJ dependence ofFµ and theJ dependence
of ωs are suppressed. Analogous to expressingGmn(Ω) as
the Fourier transform of the quantityhmn(τ), we express
Mmn

µ (Ω) as the one-sided Fourier transform

Mmn
µ (Ω) =

∫ ∞

0

dτ eiΩτM̃mn
µ (τ) (12)

These functions are Shaposhnikova’sMmn
µ (Ω) up to an

n-dependent factor. The functions̃Mmn
µ (τ) contain in-

formation about the analytic properties ofM mn
µ (Ω) anal-

ogous tohmn(τ) and Gmn(Ω). But now M̃mn
µ (τ) is

expressed in terms of integral transforms with kernels
exp(±iµωs(J)τ).

In general, theJ dependence ofωs does not permit
M̃mn

µ (τ) to decrease asymptotically fast enough asτ → ∞
for Mmn

µ (Ω) to be regular on the real axis. But ifωs(J)
permits theJ variable of integration to be changed toω s

in such a way that the domain ofωs is the entire real axis
and invoking symmetry properties, then Eq. (11) becomes
a two-sided Fourier transform. If the integrand is regular
in ωs over this domain and the integrand decreases suf-
ficiently quickly asωs → ±∞ (Ψ0 assures this), then
M̃mn

µ (τ) is bounded by a decaying exponential inτ [4].
This ensures thatMmn

µ (Ω) is regular forΩ on a half plane
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containing the real axis. So the problem is first, to see how
ωs can be an infinitely differentiable (C∞) function on the
phase space and, second, to identify sufficient conditions
that ensure that the integrand of Eq. (11) is an analytic func-
tion ofωs for −∞ < ωs <∞.

It is useful to switch the radial variable fromJ to r since
r = r(φ, p = 0) = φ is a C∞ function. Then con-
sider the properties ofωs(r). Whenωs(r) has a minimum
ωs(0) = ωs0 > 0, it is not possible for the domain of
r(ωs) to extend to zero, at least for realωs. In this case,
ωs(r) − ωs0 ∼ O(r2) implying that, on the complex-r
plane, there is a conjugate pair of branch points at imag-
inary r of order two (square-root singularities). The real
r axis remains on one of the two sheets andωs remains
positive. If the branch points are permitted to converge
on zero through variation of another parameter, the two
sheets become disconnected except at the pointr = 0.
The r axis then has the choice of sheets that determines
the sign ofωs asr crosses zero. Remaining on the same
sheet (imagine that the branch points remain infinitesimally
separated) results inωs reversing sign whileωs keeps the
same sign ifr jumps sheets. The latter results in the singu-
lar ωs(r) ∼ O(|r|) while the former results in the analytic
ωs(r) ∼ O(r) as r → 0. The latter case is a necessary
condition thatr(ωs) is locallyC∞. Although not shown
here, it is also necessary thatUrf(r) ∼ O(r4) asr → 0.
For r(ωs) to be globallyC∞, it is sufficient thatωs(r) is
everywhereC∞ and thatdωs(r)/dr is finite and bounded
from below by a positive number.

From here on it is assumed thatr = r(ωs) is C∞ for
real ωs. Due to the symmetry of the rf Hamiltonian
H(φ, p) in the momentum variablep, we have the rela-
tion φ(−ωs, θ) = φ(ωs, θ + π) implying Fµ(n,−ωs) =
(−1)µFµ(n, ωs). This permits the two terms of Eq. (11) to
be written as the two-sided Fourier transform

M̃mn
µ (τ) = πiµ

∫ ∞

−∞
dωs

∂Ψ0

∂ωs
F ∗

µ(m,ωs)Fµ(n, ωs)e−iµωsτ

(13)
As a Fourier transform, we need to only show thatΨ0 and
the Fourier coefficientsFµ(n, J) are analytic functions ofr
to evaluate the asymptotics of̃Mmn

µ (τ) [4]. TheΨ0 factor

is simple sinceΨ0 ∝ e−Urf(r)/σ2
andUrf(r) is assumed

analytic. The Fourier coefficientsFµ are defined by the
integrals

Fµ(n, J) =
1
2π

∫ 2π

0

dθ ei(nφ(J,θ)−µθ) (14)

By construction, the action-angle variables(J, θ) for
C∞ (single-particle) equations of motion have specific an-
alytic properties. The equations of motion areC∞ if
Urf(φ) is C∞, which is assumed in this paper. The func-
tion φ(J, θ) is theφ-coordinate solution of the equations
of motion: theθ dependence specifies the time dependence
while theJ dependence corresponds to the initial position
in phase space at which the equations are integrated. Infi-
nite differentiability with respect to both of these variables

(for J > 0) can be shown through properties of flows of
vector fields defined on manifolds [5] (the theorem of the
reference is applied to the vector field :H : defined on the
phase space, where :H :Ψ = {Ψ, H} and the braces are the
Poisson brackets). The theorem also applies to the regime
r ≤ 0 by making use of the differentiability properties of
r = r(φ, p = 0) = φmentioned earlier.

Since φ(r, θ) is C∞ in its r dependence, ther-
analytically continued function is necessarily regular inr
on and about the real axis. The integral Eq. (14) defining
Fµ(n, J) is well behaved soFµ(n, J = J(r)) is necessar-
ily regular in itsr dependence ([6], theorem 3.5.3).

This establishes that the integrand of Eq. (13) is analytic
for real r (andωs). SinceΨ0(r) → 0 as r → ±∞ as
an exponential of a power and analytic conditions are met,
M̃mn

µ (τ) defined by the Fourier transform Eq. (13) is nec-
essarily bounded by a decaying exponential asτ → ∞ [4],
ensuring thatMmn

µ (Ω) is regular on and about the real-Ω
axis. This is the result of this section.

4 CONCLUSION

An expression for the beam transfer functionGmn(Ω)
in a basis of azimuthal harmonics that is the Fourier trans-
form of a causal functionhmn(τ) was developed. This
expression includes all orders of synchrotron harmonics
and, when the causal function is precalculated, is an ef-
ficient way to numerically calculate dispersion relations.
As a Fourier transform, it permits the evaluation of ana-
lytic properties ofGmn through the large-τ asymptotics of
hmn. This was done numerically with an approximate form
for hmn(τ) and theφ4 rf potential. A condition ensuring
that the termsMmn

µ (Ω) ofGmn(Ω) expressed in a series in
synchrotron harmonics are regular on and about the real-Ω
axis was also developed.
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