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Abstract ties of the Fourier transform of a functigfit) are closely
N linked to thet — oo asymptotics off, an assessment of the
e o ot s i oA PrOpLES ., 10U th aympILCS s

9 9, P ay be made, at least numerically. Stronger statements are

in a basis of azimuthal harmonics of the line density, is eveloped for the functionsl ™" (£2) where the expression

the Fourier transform of a causal function that depend% - i i i
M (t) is also an integral transform but now with an
exponential kernel. If a suitable change of variable of in-

on the radio-frequency potential well in which the bunch©"
moves. The effect of all synchrotron harmonics are in- ) i . k
cluded in this function, which is derived from Krinsky and tegration can be made, the mtegral t_ransform is a Fourier
Wang's expression for the BTF expressed in the same bansform and thé — oo asymptotics is closely related to
sis (S. Krinsky and J.-M. Wang, Part. Accel. 17, 109_13§he differentiability propertles of the ppject of thg integral
(1985)). Analytic properties of the terms of the BTF ex-transform representing/;" (¢). A sufficient condition un-
pressed in a series of synchrotron harmonics, which ag€r which thet — oo asymptotics ofd/""(¢) is exponen-
approximately Shaposhnikova's BTF matrix elements (Etially decreasing, requiring/,/"" (€2) to be regular fof2 on
Shaposhnikova, CERN Report No. SL-94-19-RF (1994)fhe real axis, is derived (Sec. 3).

are studied through the large-argument asymptotics of cor-

responding causal functions. 2 FOURIER TRANSFORM EXPRESSION
FOR THE BEAM TRANSFER
1 INTRODUCTION FUNCTION

Krinsky and Wang (K & W) developed an expression for ~ First take a moment to become familiar with the nota-
the longitudinal beam transfer function (BTE),.,(2) in  tion used here. The phase-space variableand ¢ are
a storage ring, which is the frequency-domain response #fie action-angle canonical variables with respect to the
a bunch to dotal-voltage excitation obtained by an inver- radio-frequency (rf) Hamiltonian. The variabieis the
sion procedure applied to the Vlasov equation [1]. Theif0-moving coordinate related to the azimuthal angle
expression is valid for radio-frequency (rf) potentials withthroughy = wot + ¢, wherewy is the revolution fre-
monotonic synchrotron frequencies and is expressed in@lency. There is a variabjecanonically conjugate to.
basis of azimuthal harmonics. It also serves as a basis fbpe rf Hamiltonian isd = H(J) and the rf potential is
derivation of part of Shaposhnikova’s explicit formulationUt = Ur(¢). Interms of¢ andp, H(J) = H(¢,p) =
of the BTF and her BTF matrix elementg;™" () [2], the  »?/2+ Us(¢). The synchrotron frequency, is a function
latter obtained through the use of Lebedev’s synchrotrorff J andT’s(J) = 1/ws(J). The static particle distribution
harmonic expansion [3]. in phase space i¥(J) e~ H/o* whereo = awgo.,

Although Krinsky and Wang'’s expression has a singula is the momentum compaction, and is the fractional
denominator that is difficult to work with directly, it per- energy spread of the ring. Krinsky and Wang's BTF is
mits insertion of a series expansion for a singular denonexpressed a$,,,, = —G,.,/r in their notation, where
inator that results in an expression 6, () (Gn () K= eaw; /47?2 Ey andE) is the nominal particle energy.
relates excitations near theh revolution harmonic to the ~ The K & W expression for",,,,,(2) is an integral,
beam’s response near theth revolution harmonic) with

frequency dependence that is the Fourier transform of a Frn(Q) = i /Oo dJ ‘1’6(J_)
causal functior,,,,(t) determined by the single-particle inJo  ws(J)(1 - e
dynamics. A similar procedure can be appliedMg*". 0 T8 2
This function is readily calculated and provides :Arﬁmerical 8 /—271' e e 9o 9unn(1,6')(1)
method, when inserted into dispersion relations, by which
coherent frequencies including all synchrotron harmonicghere
may be calculated in one step (Sec. 2). ,
What is also interesting is that, since the analytic proper- Gmn(J0) = [ dO e MO mne(L0T0)) ()
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The terms of the series are then combined with the integrakponential, implying that7,,,,, is an entire function of
with respect tod to extend the lower limit of integration €. Contrast this behavior to the general quartic potential

to —oo, the variable of integratiofi’ is changed ta’ =  Ux(¢) = w?,¢?/2 + bo* /4, wherew, andb are nonzero
0’ /ws(J), and the derivatives oF ; andg,,.,, are combined constants; in this case the oscillatdry,,, (7) decreases as
into the scalar Poisson bracKet, ..., ¥o}. 72, Consequently7,,,,,(€2) has singularities on the real
- 0 axis in this case.
Fan®@ =5 [ [ e (g 00} 3
m Jo —o0 3 SHAPOSHNIKOVA'SBTF MATRIX

Even thoughr’ was originally defined as dependent upon ELEMENTS

J, the semi-infinite limits of integration permit this to be Shaposhnikova developed a representatio@ gf, in a
ignored and the order of integration to be mterchangecgerles of matrix element& 7" () in synchrotron harmon-
Changing variable of integration from to T = —7', We  ics [2] that is closely related to Lebedev's dispersion rela-
have the one-sided Fourier transform tion [3]. It may be derived by first inserting Eq. (6) into Eq.

1 [ i (2) with the result
Gmn(Q) = _"men(Q) = %/0 dre Thmn(T) (4)

where Gmn(J,0) = 27 Z Fi(m, J)Fu(n, J)e™®  (9)

[e’e} H=—00
hmn(T) = _"f/ aJ {gmn7 \IIO} (5) . L. . . .

0 This series is inserted into Eq. (5), the order of integration
and thed dependence of the Poisson brackets is throughnd summation is interchanged, and individual terms ex-
0 =ws(J)T = —ws(J)T. tracted. The resultis

A simpler approximate expression far,,,, is obtained
by inserting the familiar Bessel-function substitution in - _“Z an (10)
place of the Fourier coefficients of the exponential e
, > , where the terms are
ezn¢(J,9) — Z F}L(’I’L, J)ez,ué) (6) N
MZO;OO M™Mr) = 27ri,u/0 dJVi(J)
~ i J, (nr(J))e'™® (7) « ipwet
u;oo X zi: +FY, Fy, et (11)

wherer = r(.J) is the radial yarlablle that_ls the maxw.num.l_hem n, and.J dependence oF, and theJ dependence
value of¢ on the trajectory with action variableand.J , is
of w, are suppressed. Analogous to expressing, () as

the Bessel function of the first kind. Eq. (7) is then substlthe Fourier transform of the quantity,., (7), we express
tuted into Eq. (2). A Bessel-function identity is employed;, ,..... N mn P
0 get Mm($2) as the one-sided Fourier transform

gmn(J,0) = 2w Jo(r(J)Rmn (0)) (8)

whereR,,,,,(0) = vVm?2 +n2? — 2mncosf. Inserted into
Eq. (5), hmy is much more easily computed using Eqg. (8) . )
than when using the exact Eq. (2). These functions are ShapOShnIKO\{BZq”’”(Q) up to an
Numerical evidence that,,,,, () is analytic was found n-dependent factor. The function®/*"() contain in-
using the approximate Eq. (8) and Eq. (5). As was notefprmation about the analytic properties bf ;" (£2) anal-
earlier, ther — oo asymptotic behavior o .., (7) deter-  0gous t0 A, (7) and Gy (). But now M™(7) is
mines the region of the complex plane over whi¢h,,,(©2)  expressed in terms of integral transforms with kernels
is regular. In particular ,,,,, is regular on the real axis if exp(+iuws(J)7).
hmn 1S bounded by a decaying exponential with increas- In general, theJ dependence ofs; does not permit
ing 7. In the case of the modél(¢) = bp?/4 poten- M,T"(r) to decrease asymptotically fast enoughas oo
tial approximating the potential used to stretch bunchedor M " (Q2) to be regular on the real axis. Butdf;(J)
numerical calculation shows that,,,,(7) of Eq. (5) with permits theJ variable of integration to be changeddaq
the approximate Eq. (8) inserted decreases in magnitudte such a way that the domain af; is the entire real axis
at least as fast as exponentially fov,7 = 80 where and invoking symmetry properties, then Eq. (11) becomes
the dimensionless integral has magnitude of order3®  a two-sided Fourier transform. If the integrand is regular
(Aws = 0.849(4ba’wio?)t/*). Consequently(,,,, as in w, over this domain and the integrand decreases suf-
defined with the approximate form Eq. (8), is likely regularficiently quickly asw; — +oo (¥ assures this), then
on a half plane of th€ plane containing the real axis. The ML””(T) is bounded by a decaying exponential:if4].
numerical data also suggest that the decay is faster thahis ensures that/;;*" () is regular forQ2 on a half plane

M) = /0 dr " M"(7) (12)
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containing the real axis. So the problem is first, to see hoffor J > 0) can be shown through properties of flows of
ws can be an infinitely differentiable’(>°) function on the vector fields defined on manifolds [5] (the theorem of the
phase space and, second, to identify sufficient conditiongference is applied to the vector field : defined on the
that ensure that the integrand of Eq. (11) is an analytic funghase space, wherH:¥ = {¥, H } and the braces are the
tion of w; for —oco < w, < co. Poisson brackets). The theorem also applies to the regime
Itis useful to switch the radial variable frothto » since  r < 0 by making use of the differentiability properties of
r = r(¢,p = 0) = ¢ is aC™ function. Then con- r =r(¢,p = 0) = ¢ mentioned earlier.
sider the properties af,(r). Whenw;(r) has a minimum  Since ¢(r,0) is C* in its r dependence, the-
ws(0) = wso > 0, it is not possible for the domain of analytically continued function is necessarily regular-in
r(ws) to extend to zero, at least for real. In this case, on and about the real axis. The integral Eq. (14) defining
ws(r) — wso ~ O(r?) implying that, on the complex- F),(n, J) is well behaved s&,(n, J = J(r)) is necessar-
plane, there is a conjugate pair of branch points at imadly regular in its dependence ([6], theorem 3.5.3).
inary r of order two (square-root singularities). The real This establishes that the integrand of Eq. (13) is analytic
r axis remains on one of the two sheets andremains for realr (andw;). SinceW¥y(r) — 0 asr — +oo as
positive. If the branch points are permitted to convergan exponential of a power and analytic conditions are met,
on zero through variation of another parameter, the tdel,T"(T) defined by the Fourier transform Eq. (13) is nec-
sheets become disconnected except at the poiat 0. essarily bounded by a decaying exponentiat as oo [4],
The r axis then has the choice of sheets that determinesisuring that\/ """ (Q2) is regular on and about the reQl-
the sign ofw, asr crosses zero. Remaining on the samexis. This is the result of this section.
sheet (imagine that the branch points remain infinitesimally
separated) results in, reversing sign whilev; keeps the 4 CONCLUSION
same sign if- jumps sheets. The latter results in the singu- _ .
lar w,(r) ~ O(|r|) while the former results in the analytic AN expression for the beam transfer functich,,, (2)
we(r) ~ O(r) asr — 0. The latter case is a necessaryn & basis of azimuthal harmonics that is the Fourier trans-
condition thatr(w,) is locally C>. Although not shown form of a causal functioth,,, () was developed. This
here, it is also necessary thdg(r) ~ O(r%) asr — 0. expression includes all orders of synchrotron harmonics
For r(w,) to be globallyC*, it is sufficient thatw,(r) is gn.d, when the causgl function is pregalcule_tted, is an ef-
everywhereC'™ and thatdw, (r)/dr is finite and bounded ficient way to numerically calculate dispersion relations.
from below by a positive number. As a Fourier transform, it permits the evaluation of ana-
From here on it is assumed that= r(w,) is C> for lytic properties oiG,,,, through the large-asymptotics of
real w,. Due to the symmetry of the rf Hamiltonian hmn- This was done numerically with an approximate form
H(¢,p) in the momentum variablp, we have the rela- for ho.n(7) and thep? rf potential. A conditiqn ensqring
tion ¢(—ws, 0) = ¢(ws, 0 + ) implying F,(n, —w,) = that thetermsw;”"(Q') of G, () expressedin a series in
(=1)*F,(n,w,). This permits the two terms of Eq. (11) to synchrotron harmonics are regular on and about thefeal-
be written as the two-sided Fourier transform axis was also developed.

Mf”’”(T) = m'u/ dws%F* (m, ws) F(n,wg)e ™ #esT 5 ACKNOWLEDGMENTS
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