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Abstract

During the normal operation period in the Pohang Light
Source (PLS) storage ring, the spontaneous bunch length
oscillation or beating is generated by the nonlinear effects
of the RF noise whose frequency is much lower than the
bifurcation frequency. Due to the bunch length beating, we
can not supply the uniform intensity beams to users. We
have described the observed bunch length beating and its
mechanism in the PLS storage ring with a simulation.

1 INTRODUCTION

In the Pohang Light Source (PLS) storage ring, we have
occasionally met the spontaneous bunch length oscillation
or beating during the normal operation period. Although
we do not change any machine parameter, this bunch length
beating has been spontaneously happened during normal
beam operation period. Due to this beating, we can not sup-
ply the uniform intensity beams to users. To analyze this
phenomenon and solve the problem, we have monitored the
beam motion with the streak camera. From its various data,
we have found that the bunch length beating has relation
with the RF modulation due to a single RF noise whose the
amplitude is continuously changed. There are two kinds of
the RF modulations to control various beam properties via
the longitudinal nonlinear beam dynamics: One is the RF
phase modulation, and the other is the RF voltage modula-
tion [1]. Many accelerator laboratories have used the arti-
ficial RF phase modulation to control the bunch length, the
beam lifetime, and the coupled bunch mode instabilities by
injecting a small-amplitude RF signal in the main RF ac-
celerating signal through the RF phase shifter [2], [3]. The
natural RF phase modulation can be generated by the RF
noises or the RF power supply ripples [3]. Occasionally,
there are the RF noise-sidebands around the RF frequency
in the No. 3 low level RF system of the PLS storage ring
[4]. These are due to a large phase offset at the front of the
phase detector in the phase loop of the RF station. On the
contrary, in the No. 1 low level RF system, there is occa-
sionally a similar single RF noise whose the frequency is
much lower than the synchrotron frequency of 9.773 kHz,
and the amplitude is continuously changed. Since the mea-
sured bandwidth from the low level RF system to the RF
cavity is about 11 kHz, and the bandwidth of RF cavity is
about 35.0 kHz, this noise can be transferred to the beams.
Therefore, the noise works as the source of the natural RF
phase modulation in the PLS storage ring. In this paper, we
have described the spontaneous bunch length beating due
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to a single RF noise via the natural RF phase modulation in
the PLS storage ring.

2 RF PHASE MODULATION

2.1 Hamiltonian of RF Phase Modulation

When the beams are under the sinusoidal phase modu-
lation function of am sin νmθn, the synchrotron mapping
equations for an electron in the phase space coordinates
(φ, δ) can be written as [3]

φn+1 = φn + 2πνsδn + 2πνmam cos νmθn , (1)

δn+1 = δn − 2πνs sinφn+1 − 2α
fo
δn , (2)

where am is the modulation amplitude, νm = fm/fo is
the modulation tune, fm is the modulation frequency, fo
is the revolution frequency, θn = 2πn, n is the revolution
number, φn is the synchrotron phase of the electron when
the revolution number is n, νs = fs/fo is the synchrotron
tune, fs is the synchrotron frequency, δn = hη

νs
(∆p
p )n is the

normalized fractional momentum deviation when the rev-
olution number is n, h is the harmonic number, η is the
phase slip factor, and α is the synchrotron radiation damp-
ing rate. Since the synchrotron radiation damping rate α
is much smaller than the synchrotron frequency f s in the
PLS storage ring, the damping term can be ignored from
now on. Above mapping equations can be obtained by a
Hamiltonian which is given by

H =
1
2
νsδ

2 + νs [1 − cosφ] + νmamδ cos νmθ . (3)

In order to remove the momentum dependence in the per-
turbed potential due to the RF phase modulation and to
study the parametric resonance, the above Hamiltonian is
transformed into new one by a series of the canonical trans-
formations [3]. When the modulation frequency is near an
odd multiple of the synchrotron frequency, the parametric
resonance can be generated by the RF phase modulation. In
this case, the oscillating components of the RF phase mod-
ulation are out of phase with the synchrotron oscillations.

When the modulation amplitude is small, the dominant
contribution of Hamiltonian comes from the dipole mode
parametric resonance term [1]. Near the dipole mode para-
metric resonance condition, fm � fs, the time averaged
Hamiltonian 〈H〉 in the resonant rotating frame with the
modulation frequency is given by

〈H〉 = (νs − νm)J̃ − νs
16
J̃2 − νsam

√
2J̃

2
cos ψ̃, (4)
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where J̃ and ψ̃ are the action-angle coordinates in the res-
onant rotating frame with the modulation frequency [3].
Their relations with the original coordinates (φ, δ) can be
obtained by a series of the canonical transformations [3].
The first new coordinates (φ̃, δ̃) have relation with the orig-
inal ones by the first canonical transformation which is
given by

φ̃ = φ− am sin νmθ , δ̃ = δ . (5)

Then, the second new coordinates (ψ, J) have relation
with the first new ones by the second canonical transfor-
mation which is given by

√
2J cosψ = φ̃ ,

√
2J sinψ = −δ̃ . (6)

Note that this canonical transformation is done under the
small action limit, i.e., J ≤ 2 [3]. Finally, the third new co-
ordinates (ψ̃, J̃) have relation with the second new coordi-
nates by the third canonical transformation which is given
by

ψ̃ = ψ − νmθ − π

2
, J̃ = J . (7)

Since the time averaged Hamiltonian 〈H〉 is time-invariant
in the resonant rotating frame (ψ̃, J̃), the electron trajec-
tory is a torus which follows a constant Hamiltonian con-
tour. In the resonant rotating frame, the Hamiltonian equa-
tions of motion of Eq. (4) are given by

˙̃ψ = (νs − νm) − νs
8
J̃ − νsam

2
√

2J̃
cos ψ̃ , (8)

˙̃J = −1
2
νsam

√
2J̃ sin ψ̃ . (9)

2.2 Stable and Unstable Fixed Points

The stable and unstable fixed points of the time averaged
Hamiltonian 〈H〉, which represent the structure of the reso-

nant islands, can be obtained by putting ˙̃
ψ = ∂〈H〉

∂J̃
= 0 and

˙̃J = −∂〈H〉
∂ψ̃

= 0 [1], [3]. After solving two conditions for

the fixed points, we have used a new term g =
√

2J̃ cos ψ̃
to represent the phase space coordinate of the fixed points
[3]. For ψ̃ = 0 or π, the equation for g is given by

g3 − 16
(

1 − νm
νs

)
g + 8am = 0 , (10)

[1], [3]. According to the magnitude of the modulation
tune νm or the modulation frequency fm, the above cubic
equation has different real or complex roots [5].

For fm < fc = νcfo ≡ fs
(
1 − 3

16 (4am)2/3
)

which is
always less than the synchrotron frequency and is called as
the bifurcation frequency, Eq. (10) has an outer stable fixed
pointA, an inner stable fixed pointB, and an unstable fixed
point C which are given by

A(x) = −8
√
x

3
cos

ξ

3
, (11)

B(x) = 8
√
x

3
sin

(
π

6
− ξ

3

)
, (12)

C(x) = 8
√
x

3
sin

(
π

6
+
ξ

3

)
, (13)

where x = 1 − νm/νs, xc = 1 − νc/νs, and ξ =
arctan

√
(x/xc)3 − 1. Here, ψ̃ is π for A, and ψ̃ is 0 for

B and C [1], [3]. Therefore, electrons will move mostly
on the tori with constant Hamiltonians around the two sta-
ble fixed points in the phase space. Of course, the electron
with the proper Hamiltonian can diffuse from one stable
fixed point to the other one through the unstable fixed point
C due to mainly the Touschek scattering [2]. When the
modulation frequency is much less than the bifurcation fre-
quency, i.e., fm � fc, ξ approaches to π/2. Therefore, in
this limit, A→ −4

√
x, B → 0, and C → 4

√
x.

When the modulation frequency fm approaches the bi-
furcation frequency fc from below, the outer stable fixed
point A and an unstable fixed point C move in, and the in-
ner stable fixed point B moves out. Since ξ = 0 at the
bifurcation frequency fm = fc, A is −(8am)1/3, and both
the inner stable fixed point B and the unstable fixed point
C are the same as (4am)1/3.

For fm > fc, there is only one stable fixed pointAwhich
is given by

A(x) = −(4am)1/3
{[√

1 − (x/xc)3 + 1
]1/3

−
[√

1 − (x/xc)3 − 1
]1/3

}
.

3 SIMULATION AND OBSERVATION

3.1 Simulation Results

We have simulated the RF phase modulation due to the
RF noise to analyze the bunch length beating. By solv-
ing the time averaged Hamiltonian equations of motion,
Eqs. (8) and (9), we can obtain Fig. 1 which shows the
100000 turn tracking results in the resonant rotating frame
with the modulation frequency [2]-[4]. Here, all simula-
tion parameters of may18am, may18pm, and jun06am are
summarized in Table 1 of the reference [4]. When the
modulation frequency is much lower than the bifurcation
frequency such as may18am, the phase space area, the en-
ergy spread, or the bunch length can be increased as the
modulation amplitude am increases as shown in Fig. 1(a)
and (b) [4]. However, at near the dipole mode paramet-
ric resonance condition of fm = fc, the phase space area
is reduced and is almost constant though the modulation
amplitude is increased as shown in Fig. 1(c) and (d). When
the modulation frequency is higher than the bifurcation fre-
quency, there is only one stable fixed point A as shown in
Fig. 1(f). All other simulation results are well agreed as
described at Section 2.2 and our actual observations [4].

3.2 Observation Results

During the PLS 400 bucket filled normal operation pe-
riod, we have occasionally met the bunch length beating as
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Figure 1: Phase space tracking of the RF phase modula-
tion for (a) am = 0.003 at may18am, (b) am = 0.030 at
may18am, (c) am = 0.003 at may18pm, (d) am = 0.030 at
may18pm, (e) the bifurcation frequency at may18pm, and
(f) jun06am conditions. Here, the horizontal and the verti-

cal axes mean
√

2J̃ cos(ψ̃−νmθ) and
√

2J̃ sin(ψ̃−νmθ),
respectively.

shown in Fig. 2 which is observed by the streak camera at
140 mA, 2.5 GeV under a single 5.244 kHz RF noise. Here,
the amplitude of the RF noise is continuously changed al-
though its frequency is constant. At first, the most electrons
in 400 bunches stay around the inner stable fixed point B
when the amplitude of the RF noise is small as shown in
Figs. 1(a) and 2(a). As the amplitude of the RF noise in-
creases, some electrons begin to diffuse from the inner sta-
ble fixed point B to the outer stable fixed point A via the
Touschek scattering as shown in Fig. 2(b) [2]. When the
amplitude of the RF noise is high enough, lots of elec-
trons stay around the outer stable fixed point A as shown
in Figs. 1(b) and 2(c). Finally, the bunch length is reduced
again due to the combined action of the reduced amplitude

(a) (b) (c)

Figure 2: Streak camera images of the beam motion when
the bunch length beating is generated due to a single
5.244 kHz RF noise driven phase modulation. The max-
imum horizontal time scale is 1 ms and the vertical time
scale which means the bunch length is same for three cases.

of the RF noise and the synchrotron radiation damping. In
this case, almost all electrons return around the inner stable
fixed point B again as shown in Fig. 2(a). In this way, the
strong bunch length beating is continued until the ampli-
tude of the RF noise is not severely changed any more. The
amplitude of the 5.244 kHz noise is changed about 197%
during a full cycle of Fig. 2. Although its full cycle pe-
riod is random due to the randomness of the noise ampli-
tude change, it takes about a few minutes for one full cycle.
Note that though the amplitude of the RF noise is high, the
strong bunch length beating can not be observed at near the
dipole mode parametric resonance condition of fm = fc
as shown in Fig. 1(d). In this case, only the bunch length
compression is observed as described in the reference [4].
Therefore, the bunch length beating can be generated when
the modulation frequency is much lower than the bifurca-
tion frequency via the diffusion between two far-off stable
fixed points.

4 SUMMARY

We have occasionally observed the bunch length beating
when the RF noise frequency is far from the bifurcation
frequency. This is due to the RF noise driven phase modu-
lation where the diffusion between two far-off stable fixed
points is generated. We have cured this bunch length beat-
ing by attaching a mechanical phase shifter in the phase
loop of the RF station, and we can supply the uniform in-
tensity beams to users.
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