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Abstract

A linac-ring collision scheme was considered in re-
cent proposals of electron-gold colliders (eRHIC) and
polarized-electron light-ion colliders (EPIC). The advan-
tages of using an energy-recovered linac for the electron
beam is that it avoids the limitation of beam-beam tune
shift inherent in a storage ring, pertains good beam qual-
ity and easy manipulation of polarization. However, the
interaction of the ion beam in the storage ring with the
electron beam from the linac acts analogously to a trans-
verse impedance, and can induce unstable behavior of the
ion beam similar to the strong head-tail instability. In this
paper, this beam-beam kink instability with head-tail ef-
fect is analysed using the linearized Vlasov equation, and
the threshold of transverse mode coupling instability is ob-
tained.

1 INTRODUCTION
A linac-on-ring collision scheme, where a linac beam

collides with a storage ring beam, was earlier proposed [1]
based on the idea that in such colliders the charge densi-
ty for the storage ring beam is no longer limited by the
beam-beam tune shift of the linac beam, hence a higher lu-
minosity can be achieved. The interest of linac-ring colli-
sion scheme is renewed in recent proposals of electron-gold
colliders (eRHIC) and polarized-electron light-ion collider-
s (EPIC)[2]. Our previous study of the beam-beam effects
in a linac-on-ring B factory revealed that coherent beam-
beam head-tail dipole instability could set strong limit to
luminosity in this collision scheme. This dipole instability
was first observed in our strong-strong beam-beam simu-
lation [3] in a linac-ring B factory, and later confirmed by
our analysis of the initial value problem of the system in
the linear growth regime when synchrotron oscillation is
turned off [4]. Recent simulation of linac-ring beam-beam
effects by Perevedentsev and Valishev [5] further demon-
strated the head-tail instability due to the betatron phase
advance over the beam-beam interaction region, as well as
the strong head-tail instability due to the linac-ring beam-
beam interaction. In this paper, the stability of a stored ion
bunch, under collision with a short electron bunch, was s-
tudied using the linearized Vlasov equation. It is shown
that the linear beam-beam kick between electron and ion
bunches acts like a broad-band transverse impedance to the
dipole moment of the ion slices. Using conventional treat-
ment of transverse mode coupling instability, we obtained
threshold for the strong head-tail beam-beam kink insta-
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bility. We also find that due to the localized beam-beam
kick, small growth rate exists before reaching the trans-
verse mode coupling threshold. It should be emphasized
that the betatron phase advance through the interaction re-
gion, often called hourglass effect, is not yet included in
our current study. Some initial estimations [6] show that
this effect could cause serious head-tail instability before
the strong head-tail instability takes place. Further analyti-
cal study including the hourglass and chromaticity effects,
as well as numerical study using the strong-strong beam-
beam simulation with actual nonlinear beam-beam interac-
tion force, is currently underway.

2 VLASOV EQUATION ANALYSIS
For this analysis, we consider the dynamics of vertical

dipole moments of an ion bunch (σx+ � σy+) in a stor-
age ring colliding with an electron bunch (σx− � σy−)
from a linac. The ion bunch with bunch length l+ is much
longer than the electron bunch, thus the electron bunch is
described by a δ-like slice. For simplicily of analysis, the
ion bunch is chosen to have uniform longitudinal charge
density, and the rms bunch sizes σx+ and σy+ are uniform
along the bunch. Note that here we assume β ∗

y+ � l+ at
IP, so the hourglass effect on synchrobetatron coupling is
not included.

Let z be the longitudinal coordinate in the ion bunch,
−l+/2 ≤ z ≤ l+/2, and consider the first interaction
which occurs during −l+/4 ≤ s ≡ ct ≤ l+/4. Due
to linear beam-beam kick in terms of the focusing length
f+, with f−1

+ = 2N−ri/γ+σy−(σx− + σy−) and ri =
qie

2/mic
2, the motion of the vertical coordinate y+(z, s)

of an ion particle is given by

dy+

ds
= uy+,

duy+

ds
= −δ(s− z

2
)
y+ − ȳ−(z, s)

f+
, (1)

where ȳ−(z, s) is the verticle offset of the electron slice
at the encounter with the ion slice at z. Similarly, if we
simplify y±(z, s) for s = z/2 as y±(z), we have for the
ion slice at z

dȳ−
ds

= ūy−,
dūy−
ds

= −λz+
ȳ− − ȳ+(z)

f−
. (2)

with f−1
− = 2N+re/γ−σy+(σx++σy+). Here the longitu-

dinal ion density is constant: λz+ = 1/l+, hence the linear
beam-beam kick strength on e− from all longitudinal ion
slices is uniform. Let k2− = 1/l+f−, and assuming zero
offset and deflection of the electron slice from the linac,
we get from Laplace transform of Eq. (2)

ȳ−(z+) =
k−
2

∫ z+

−l+/2

sin
k−
2

(z+ − z′+)ȳ+(z′+)dz′+. (3)
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Applying Eq. (3) to Eq. (1), we obtain the general descrip-
tion of the ion vertical motion in the whole ring

dy+

ds
= uy+,

duy+

ds
+ k2

βy+ =
Fy(z, s)

E
(4)

Fy(z, s)
E

= −
∞∑

n=0

δ(s− z

2
− nC)

y+ − ȳ−
f+

, (5)

with kβ = ωβ/c accounts for the sinusoidal betatron oscil-
lation, C the circumference of the ring, and n the number
of collisions. Note here the electron bunch disruption pa-
rameter D− and the ion bunch beam-beam tune shift ξ+ are
related to f−, f+ and betatron function β∗

y+ at IP by

D− = σz+/f−, ξ+ = β∗
y+/4πf+. (6)

With Eqs. (3)-(5), we can now focus on the stability
of the stored ion beam following the standard treatment
of transverse collective instability [7]. Let y be the verti-
cal coordinate of an ion particle, uy = dy/ds, z the dis-
tance from the synchronous particle and δ the relative en-
ergy deviation from designed energy. The synchrotron mo-
tion is given by dz/ds = −ηδ and dδ/ds = (k2

s/η)z +
(y/E)∂Fy(z, s)/∂z ≈ (k2

s/η)z for ks = ωs/c. Using the
action-angle transform y = q cos θ, uy = −kβq sin θ and
z = r cosφ, ηδ/ks = r sinφ, we get the Vlasov equation
for the phase space distribution function with the new vari-
ables f(q, θ, r, φ, s)

∂f

∂s
+ kβ

∂f

∂θ
+ ks

∂f

∂φ
+

Fy(z, s)
E

∂f

∂uy
= 0. (7)

Furthermore, we write f(q, θ, r, φ, s) as

f(q, θ, r, φ, s) = f0(q)g0(r) + f1(q, θ, r, φ, s) (8)

where f0(q) describes the equilibrium betatron phase space
distribution and g0(r) the equilibrium longitudinal phase
space distribution, and f1(q, θ, r, φ, s) stands for the per-
turbation from the equilibrium distribution. For uniform
longitudinal distribution, we have for ẑ = l+/2

g0(r) =
N+η

2πksẑ

1√
ẑ2 − r2

(r ≤ ẑ). (9)

Consider only the dipole motion, we have

f1(q, θ, r, φ, s) = −∂f0

∂q

[
eiθg+(r, φ, s) + e−iθg−(r, φ, s)

]
,

(10)
and the dipole offset of the ion slice at z is

ȳ(z, s) =
l+
N+

∫ ∞

−∞
dδ[g+(r, φ, s) + g−(r, φ, s)]. (11)

Combining terms with e±iθ, and expending g±(r, φ, s) in
terms of longitudinal modes,

g±(r, φ, s) =
∞∑

l=−∞
R±

l (r, s)eilφ, (12)

we get from Eq. (7) the linearized equation for R±
l (r, s):

∞∑
l=−∞

[
∂R±

l

∂s
+ i (±kβ + lks)R±

l

]
eilφ

∓ i

2kβ
g0(r)

Fy(z, s)
E

= 0 (13)

for 1/f+C 	 k2
β , with

Fy(z, s)
E

=
∞∑

n=0

k−
2f+

I(z, s)δ(s− z

2
− nC). (14)

By defining W⊥(z) = sin
k−(z)

2
H(z) with the Heaviside

step function H(z), we have

I(z, s) =
∫ z

−ẑ

sin
k−
2

(z − z′)ȳ(z′)dz′

=
∫ ∞

−∞
W⊥(z − z′)ȳ(z′)dz′. (15)

Note that in Eq. (15) the range of z ′ is actually limited
to [−ẑ, ẑ] via g0(r) in Eq. (9), due to Eqs. (11), (12) and

W0(r) =
ks

N+η
g0(r) in the following expansion in terms

of uniform bunch mode h |l|
m(r)

R±
l (r, s) = W0(r)

∞∑
m=0

a±lm(s)h|l|
m(r), (16)

h|l|
m(r) =

√
4π

(|l| + 2m + 1
2 )m!Γ(|l| + m + 1

2 )
(|l| + m)!Γ(m + 1

2 )

×
(r

ẑ

)|l|
P (|l|,−1/2)

m

(
1 − 2r2

ẑ2

)
. (17)

We can see clearly from Eqs. (13)-(15) that the linear beam-
beam interaction acts analogously to a transverse wake
function, which corresponds to the broad-band transverse
impedance

W⊥(z − z′) =
−i

2π

∫ ∞

−∞
[Z⊥c] eik(z−z′)dk (18)

ReZ⊥(k) c =
π

2

[
δ(k − k−

2
) − δ(k +

k−
2

)
]

ImZ⊥(k) c =
k−
4k

(
1

k − k−/2
+

1
k + k−/2

)
.

Substituting Eqs. (14), (16) and (18) into Eq. (13), we final-
ly get the equations for mode expansion coefficients a±

lm0

and a±lm before and after a single collision:

a+
lm − a+

lm0 =
∑
l′,m′

Mlm,l′m′(a+
l′m′0 + a−l′m′0)

a−lm − a−lm0 = −
∑
l′,m′

Mlm,l′m′(a+
l′m′0 + a−l′m′0),
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where the coupling matrix Mlm,l′m′ is

Mlm,l′m′ = cl,l′

∫ ∞

−∞
dk[Z⊥(k)c]g|l|m(k)g|l′|m′(k),

g|l|m(k) ≡ C|l|mJ|l|+2m+1/2(kẑ)/
√
kẑ

C|l|m =

√
(|l| + 2m+ 1/2)Γ(m + 1/2)Γ(|l|+ m + 1/2)

2πm!(|l| + m)!

with cl,l′ ≡ il−l′ [sign(l)]l[sign(l′)]l
′
. Using broadband

impedance and the spectrum component g |l|m(k) for the
uniform distribution, we can show for D̄− = l+/f− =

(
l+
σ+

)D−, χ =
k−l+

4
=

√
D̄

4
and kββ

∗
y+ � 1,

Mlm,l′m′ = cl,l′πξ+ [coJµ(χ)Jµ′(χ)

+i ce


 (−)(µ−µ′)/2

sin
(µ + µ′)π

2

Jmax(µ,µ′)(χ)J−min(µ,µ′)(χ)

− 4
π2

sin
(µ− µ′)π

2
µ2 − µ′2





 (19)

with µ = |l| + 2m + 1/2, µ′ = |l′| + 2m′ + 1/2, co =
[1 + (−)|l|+|l′|+1]/2 and ce = [1 + (−)|l|+|l′|]/2.

It can be shown that the full turn map from pre-nth col-
lision to pre-(n+ 1)th collision is(

A+

A−

)
n+1

= M
(

A+

A−

)
n

(20)

with

M =
(

Dβ 0
0 D−1

β

)(
Ds 0
0 Ds

)(
I + M M
−M I −M

)

for vector element A±
lm = a±lm, and matrix elemen-

t (Dβ)lm,l′m′ = e−iµβ δll′δmm′ and (Ds)lm,l′m′ =
e−ilµsδll′δmm′ with µs = 2πνs. Here l = 0,±1,±2, · · ·
and m = 0, 1, 2, · · ·.

The stability of the system can be studied from the eigen-
values of M which are expressed as eΩr+iΩi . In Fig. 1, we
show Ωr and Ωi/µs vs. Λ ≡ D−ξ+/νs by setting µβ = 0
and varying ξ from 0 to 0.01 while fixing D̄ = 4 and
νs = 0.001. The threshold of transverse mode coupling,
or strong head-tail instability, occurs at Λth � 6.4. Zoom-
ing into the “stability” region Λ ≤ Λth we find that there
still exists small growth rate, impling synchrobetatron cou-
pling due to localized rather than distributed beam-beam
kick. The dependence of the threshold value Λ th vs. D−,
with νs fixed to 0.001, is shown in Fig. 2. It is shown that
for higher disruption D−, the electrons oscillate through
the positron bunch, and thus the system is more stable, al-
lowing for higher threshold. We also found that for large Λ,
if we fix D− while increasing νs and ξ+ simutaneously to
keep Λ constant, the growth rates before the threshold get

bigger and gradually the synchrobetatron coupling domi-
nates over the transverse mode coupling. Further studies
with strong-strong beam-beam simulation and analysis in-
cluding betatron phase advance in the interaction region is
currently underway.
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Figure 1: Ωr and Ωi/µs vs. D−ξ+/νs by varying ξ from 0
to 0.01 while fixing D̄ = 4 and νs = 0.001.
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Figure 2: Threshold value of D−ξ+/νs at the onset of
instability as a function of disruption parameter D−, for
νs = 0.001.
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