Simulations of the Strong-Strong Beam-Beam Interaction in Hadron Colliders

J. A. Ellison, M. Vogt, UNM, Albuquerque, NM 87131, USA
T. Sen, FNAL, Batavia, IL 60510, USA

Abstract

We develop weighted macro-particle tracking and the Perron-Frobenius operator technique for simulating the time evolution of two beams coupled via the beam-beam interaction. The π - and σ-modes, with and without a sextupole perturbation, are studied based on the VlasovPoisson system. Extending standard averaging formalism to maps with a small collective force, we derive an approximation to the "kick-rotate" model of our simulation. This eliminates the delta function smoothing in the Vlasov equation, common in many theoretical approaches. Action densities are quasi-equilibria, consistent with simulation, and linearization leads to uncoupled Fourier modes and thirdkind integral equations. Extensions to 2-d.o.f. and a flexible general purpose code are being developed.

1 MODEL AND ANALYSIS

1.1 The Kick-Rotate Model

Let $\psi_{n}(x)$ and $\psi_{n}^{*}(x), x=(q, p)^{\mathrm{T}}$, denote the phase space densities of the two counter-rotating beams just before the IP at turn n. Then the evolution of a particle in the unstarred beam is given by

$$
\begin{equation*}
x_{n+1}=R\left[x_{n}+\xi(0,1)^{\mathrm{T}}\left(G * \psi_{n}^{*}\right)\left(x_{n}\right)\right] . \tag{1}
\end{equation*}
$$

Here R is rotation thru an angle $\mu=2 \pi Q$ ($\alpha=0$ and $\beta=$ 1) and $(G * \psi)(x):=\int_{\mathbb{R}^{2}} G\left(q-q^{\prime}\right) \psi\left(x^{\prime}\right) d x^{\prime}$, for response function G. The evolution law for the starred beam is given by (1) with ψ_{n}^{*} replaced by ψ_{n}. The transformation (1) is symplectic so $\psi_{n+1}\left(x_{n+1}\right)=\psi_{n}\left(x_{n}\right)$. Defining "angle"action variables, $x_{n}=: \sqrt{2 J_{n}}\left(\cos \alpha_{n},-\sin \alpha_{n}\right)^{\mathrm{T}}$, where $\alpha_{n}=n \mu-\Theta_{n}$, the evolution law becomes

$$
\begin{align*}
\Theta_{n+1} & =\Theta_{n}+\xi A \frac{1}{\sqrt{2 J_{n}}} \cos \alpha_{n}+O\left(\xi^{2}\right) \\
J_{n+1} & =J_{n}-\xi A \sqrt{2 J_{n}} \sin \alpha_{n}+O\left(\xi^{2}\right) \tag{2}
\end{align*}
$$

where $A\left(n \mu, \Theta_{n}, J_{n}, ; \Psi_{n}^{*}\right)=\int_{\mathcal{C}} G \Psi_{n}^{*} d \Theta^{\prime} d J^{\prime}$ and $\mathcal{C}:=$ $[0,2 \pi) \times[0, \infty]$. Here $G=G\left(\sqrt{2 J_{n}} \cos \left(n \mu-\Theta_{n}\right)-\right.$ $\left.\sqrt{2 J^{\prime}} \cos \left(n \mu-\Theta^{\prime}\right)\right)$ and $\Psi_{n}^{*}(\Theta, J)=\psi_{n}^{*}(\sqrt{2 J} \cos (n \mu-$ $\Theta),-\sqrt{2 J} \sin (n \mu-\Theta))$.

1.2 Map-Averaging

Equations (2) are in a standard form for averaging as $\left(\Theta_{n}, J_{n}\right)$ and Ψ_{n}^{*} are slowly varying for small ξ. The averaged equations are obtained by dropping the $O\left(\xi^{2}\right)$ term and averaging the rhs over n holding the slowly varying
quantities fixed. We write $\Theta_{n+1}=\Theta_{n}+\xi k_{1}\left(\Theta_{n}, J_{n} ; \Psi_{n}^{*}\right)$ and $J_{n+1}=J_{n}-\xi k_{2}\left(\Theta_{n}, J_{n} ; \Psi_{n}^{*}\right)$. Inverting these through $O(\xi)$ gives the averaged evolution law for the densities:

$$
\begin{array}{r}
\Psi_{n+1}(\Theta, J)= \\
\Psi_{n}\left(\Theta-\xi k_{1}\left(\Theta, J ; \Psi_{n}^{*}\right), J+\xi k_{2}\left(\Theta, J ; \Psi_{n}^{*}\right)\right) \tag{3}
\end{array}
$$

and a similar equation for the starred beam. Equation (3), with the corresponding equation for the starred beam, is our basic model. In the CR model [1] $G(q)=\operatorname{sgn}(q)$ where sgn is the signum function. The Birkhoff ergodic theorem gives the average of $\sin (n \mu-\theta) \operatorname{sgn}(\cos (n \mu-\theta))$ equals the t-average of $\sin (t) \operatorname{sgn}(\cos (t))$ which is zero and $2 / \pi$ if \sin is replaced by \cos, for almost all θ if $\mu / 2 \pi$ is irrational. Thus $k_{j}(\Theta, J ; \Psi)=\int_{\mathcal{C}} K_{j}\left(J, J^{\prime}, \Theta-\right.$ $\left.\Theta^{\prime}\right) \Psi\left(\Theta^{\prime}, J^{\prime}\right) d \Theta^{\prime} d J^{\prime}$ where $K_{1}=(2 / \pi) \partial_{J} D$ and $K_{2}=$ $(2 / \pi) \partial_{\Theta} D$ for $D=\sqrt{2 J+2 J^{\prime}-4 \sqrt{J J^{\prime}}} \cos \Theta$.

If Ψ_{0} and Ψ_{0}^{*} depend only on J then $\Psi_{n}(\Theta, J)=\Psi_{0}(J)$ and $\Psi_{n}^{*}(\Theta, J)=\Psi_{0}^{*}(J)$. This follows from the fact that $k_{2}(\Theta, J ; \Psi(J))=0$ since K_{2} is an odd function of Θ. Thus functions only of J are equilibria for the averaged model and thus quasi-equilibria for (1).

Fig. 1 shows the action density for about $100 n$ in the interval from 0 to 2^{17} for two cases based on a PF simulation. In the first case (red crosses) the initial density is a function of the action alone and to the eye there is no change. In the second case (green X-es) the offset of both beams ($\pm 1 \sigma_{0}$) leads to a Θ dependence and we see the action density evolves. Thus $\xi=0.003$ is within the averaging approximation on this time interval.

Figure 1: The action density

1.3 The Linearized Equations

Here we study the behavior of solutions of (3) in an ϵ-neighborhood of an equilibrium, thus we write $\Psi_{n}(\Theta, J)=\Psi_{e}(J)+\epsilon F_{n}(\Theta, J)$ and the corresponding equation for the starred beam. Plugging into (3) and dropping higher order terms yields $F_{n+1}-$ $F_{n}=\xi\left[\Psi_{e}^{\prime}(J) k_{2}\left(\Theta, J ; F_{n}^{*}\right)-\partial_{\Theta} F_{n}(\Theta, J) k_{1}\left(\Theta, J ; \Psi_{e}\right)\right]$. Clearly, $\omega(J):=k_{1}\left(\Theta, J ; \Psi_{e}\right)$ is independent of Θ and is the tune shift in the weak-strong case where the strong beam has density Ψ_{e}. Defining $H:=F \pm F^{*}$, we obtain our basic integro-difference equations:

$$
\begin{gather*}
H_{n+1}(\Theta, J)-H_{n}(\Theta, J)=-\xi \omega(J) \partial_{\Theta} H_{n}(\Theta, J) \pm \\
\xi \Psi_{e}^{\prime}(J) \int_{C} K\left(J, J^{\prime}, \Theta-\Theta^{\prime}\right) H_{n}\left(\Theta^{\prime}, J^{\prime}\right) d \Theta^{\prime} d J^{\prime} \tag{4}
\end{gather*}
$$

for the σ and π equations respectively.
Because of the convolution structure of (4), the Fourier coefficients $h_{n, k}(J)$ of $H_{n}(\cdot, J)$ are uncoupled and evolve by $h_{n+1, k}(J)-h_{n, k}(J)=\xi\left[\pm i k \omega(J) h_{n, k}(J)+\right.$ $\left.\Psi_{e}^{\prime}(J) \int_{0}^{\infty} K_{k}\left(J, J^{\prime}\right) h_{n, k}\left(J^{\prime}\right) d J^{\prime}\right]$, where $K_{k} / 2 \pi$ is the k th Fourier coefficient of $K\left(J, J^{\prime}, \cdot\right)$. To analyze the stability, we note that the equation for the Fourier modes is equivalent to $\partial_{t} h(J, t)=\xi[\pm i k \omega(J) h(J, t)+$ $\left.\Psi_{e}^{\prime}(J) \int_{0}^{\infty} K_{k}\left(J, J^{\prime}\right) h\left(J^{\prime}, t\right) d J^{\prime}\right]+O\left(\xi^{2}\right)$. Taking the Laplace transform gives

$$
\begin{array}{r}
{[s \mp i k \xi \omega(J)] \tilde{h}(J, s)=} \\
\xi \Psi_{e}^{\prime}(J) \int_{0}^{\infty} K_{k}\left(J, J^{\prime}\right) \tilde{h}\left(J^{\prime}, s\right) d J^{\prime}+h(J, 0) \tag{5}
\end{array}
$$

Equation (5) is a nonhomogeneous integral equation of the third kind. An identical homogeneous equation is obtained from the ansatz $h_{n, k}(J)=a^{n} \phi_{k}(J, a)$. We are presently analyzing these equations and are in the process of developing a weakly nonlinear theory to see coupling of Fourier modes.

2 SIMULATIONS

The Perron-Frobenius (PF) and weighted macroparticle tracking (WMPT) methods have been developed. Both are based on the evolution law $\psi_{n+1}(x)=$ $\psi_{n}\left(T^{-1}\left(x ; \psi_{n}^{*}\right)\right)$ given a symplectic one turn map (OTM) T as in (1).

The PF method [2] directly applies this evolution law on a square grid $\left\{x_{i j}\right\}, 1 \leq i, j \leq n_{g}$. An approximation $\tilde{\psi}_{i j}(n)$ to the density $\psi_{n}\left(x_{i j}\right)$ is obtained by tracking $x_{i j}$ backward to $T^{-1}\left(x_{i j} ; \psi_{n}^{*}\right)$ and interpolating the density between its neighboring grid points. WMPT [3] is a method for computing time dependent phase space averages of f via $\langle f\rangle_{n}:=\int_{\mathbb{R}^{2}} f(x) \psi_{n}(x) d^{2} x=$ $\int_{\mathbb{R}^{2}} f\left(M_{n}(x)\right) \psi_{0}(x) d^{2} x$, where M_{n} is the symplectic $n-$ turn map containing the collective force. Averages are approximated by

$$
\langle f\rangle_{n} \approx \begin{cases}\sum_{i j} f\left(x_{i j}\right) \tilde{\psi}_{i j}(n) w_{i j} & : \mathrm{PF} \tag{6}\\ \sum_{i j} f\left(M_{n}\left(x_{i j}\right)\right) \psi_{i j}(0) w_{i j} & : \mathrm{WMPT}\end{cases}
$$

where $w_{i j}$ are quadrature weights. Note that $\left(G * \psi_{n}^{*}\right)(q)=$ $\langle G(\cdot, q)\rangle_{n}^{*}$, but generally its numerical evaluation for offgrid trajectories has an operations count of $O\left(n_{g}^{4 d}\right)$ in d d.o.f. We study the centroids $\bar{q}_{n}^{\sigma, \pi}:=\langle q\rangle_{n} \pm\langle q\rangle_{n}^{*}$, as well as the beam emittance.

2.1 Some Results in one d.o.f.

The beam-beam interaction is a $2-$ d.o.f. process. However as a starting point for WMPT we have compared three different 1-d.o.f. limiting cases [3], a flat beam and motion in the vertical phase plane (CR) [1], a round beam (AS) [3], and a flat beam and motion in the horizontal phase plane (YO) [4]. For CR we found a completely selfconsistent WMPT representation of the collective force with an operations count of only $O(N \log N), N=n_{g}^{4}$. For AS \& YO the operation count for a completely selfconsistent WMPT evolution is $O\left(N^{2}\right)$. Thus, we simulated them by approximating the starred density in (1) by a Gaussian with the moments calculated from the starred beam so that the collective force can be evaluated analytically. This approximation (GSA) is often used, [3, 5]. The tune difference of the modes obtained by FFT from the time discrete data of \bar{q}_{n}^{σ} and \bar{q}_{n}^{π} as well as the separation of the unperturbed (linear) tunes needed to establish phase mixing (damping) depends on the limiting case [3].

Fig. 2 shows good agreement between the spectra of the σ - and π-mode obtained with PF and WMPT for $\xi=0.003$ and almost identical linear tunes $Q_{0}=\sqrt{5}-2$ in the CR limit, giving confidence in the methods. Both beams were initially standard Gaussians with the unstarred beam offset by $0.1 \sigma_{0}$. The initial density was represented by a 201×201 square grid over $\pm 5 \sigma_{0}$ in both directions for WMPT and the grid for the PF simulation used 241×241 points over $\pm 6 \sigma_{0}$. The FFT was performed over data from 2^{17} turns. The two σ-mode spectra (peak on right) are almost indistinguishable. The two π-mode spectra have nearly the same tune and the continuum due to the single particle motion is quite pronounced in the WMPT spectrum.

Figure 2: Comparison between PF and WMPT

Fig. 3 shows the emittance growth induced by the interaction of a strong sextupole kick in the center of the arc and a strong beam-beam interaction in the CR limit close to the
third-integer resonance. Both beams were initially round and one had a $0.1 \sigma_{0}$ offset. The sextupole alone (blue curve) (or with ξ up to .006) leads to hardly any emittance growth. However, when the incoherent tune spread reaches $1 / 3(\xi=.009$, green $)$ the emittance is significantly increased. Moreover, in the latter case the π-mode amplitude is enhanced from about $0.1 \sigma_{0}$ to about $1.5 \sigma_{0}$ whereas the σ-mode amplitude stays small (both not shown). Finally when the $1 / 3$ resonance is well inside the incoherent tune spread ($\xi=0.012$, red), the emittance grows strongly and the amplitudes of both modes are significantly enhanced (not shown).

Figure 3: Emittance growth with beam-beam and Sextupole. PF with 401×401 over $\pm 6 \sigma_{0} . \quad \sigma_{0}^{2} k_{2}$ is the normalized sextupole strength.

2.2 Preliminary results in two d.o.f.

We are modifying the PF and WMPT codes to work in the $4-\mathrm{D}$ transverse phase space (BBPF2D, BBDeMo2D). Initial results for PF show that with a 51^{4} grid and $4-\mathrm{D}$ cubic interpolation the probability is not satisfactorily conserved even for a short time. We hope to improve the 4-D PF performance by higher order local or global (spline) interpolation. WMPT conserves probability by construction, however it requires attention in order to avoid an operations count per turn of $O\left(n_{g}^{8}\right)$. So far we have implemented two approaches into BBDeMo2D. The GSA approach which is clearly $O\left(n_{g}^{4}\right)$ [5] and the Hybrid Fast Multipole Method (HFMM) [6] which is also approximately $O\left(n_{g}^{4}\right)$. However, the simulations in 4-D phase space require enormous amount of (real) memory and computation time and we are pursuing parallel versions.
Fig. 4 shows preliminary results for the spectra of the π_{x} - and σ_{x}-modes for initially round Gaussian beams with WMPT over 2^{13} turns. The GSA used 51^{4} particles and the selfconsistent HFMM used 45^{4} particles, both over a $\pm 5 \sigma_{0}$ initial grid. The π_{x} - and σ_{x}-modes can clearly be resolved. Note that the two σ_{x}-mode spectra in this resolution are almost on top of one another. The modes in the y-plane (not shown) behave the same. The ratio $\varepsilon_{x, n} / \varepsilon_{y, n}$ stays very close to $1 \equiv \varepsilon_{x, 0} / \varepsilon_{y, 0}$. The deviation from one is less than 10% which is well below the expected resolution of these runs. The separation of the π_{x}-mode tune from the
σ_{x}-mode tune is $(1.4 \pm 0.1) \xi_{x}$ in the GSA and $(1.5 \pm 0.1) \xi_{x}$ with HFMM. The single particle continuum, visible in the π-mode spectra, is a little more pronounced with HFMM.

Figure 4: The spectra of the $\pi_{x^{-}}$and σ_{x}-mode computed with BBDeMo2D with 51^{4} particles in the round GSA (red, green) and with 45^{4} particles in the HFMM approach (blue, purple)

3 OUTLOOK

WMPT and PF show good agreement in the 1 d.o.f cases thus we are extending both to the more important 2 d.o.f case and will determine which is more efficient. We will also continue the analytical work including extensions to 2 d.o.f, development of a spectral theory for the linearized equations and development of a weakly nonlinear theory to investigate coupling of Fourier modes within and between the σ and π equations. We investigate long term tracking with the averaged equations which should give a speed up of $O(1 / \xi)$.

Work supported by DOE contract DE-FG0399ER41104. Discussions with R. L. Warnock are gratefully acknowledged.

4 REFERENCES

[1] A. W. Chao and R. D. Ruth, Part.Acc. 16, pp. 201-216 (1985)
[2] R. L. Warnock and J. A. Ellison, Proc.: 2-nd ICFA WS. on High Brightness Beams, UCLA, Ed.: J. Rosenzweig and L. Serafini, World Scientific, (2000); and Proc.: 2-nd ICFA Workshop on Quantum Aspects of Beam Phsyics, Capri, Oct. 2000, to be published by World Scientific.
[3] M. Vogt, T. Sen, J. A. Ellison, FNAL Pub-01/096-T, submitted to Phys. Rev. S.T.-AB (2001)
[4] K. Yokoya and H. Koiso, Part.Acc. 27, pp. 181-186 (1990)
[5] M.-P. Zorzano and F. Zimmermann, LHC Project Report 314, CERN/SL (1999)
[6] L. Greengard, Thesis, The MIT PRess Cambridge MA London England (1988); F. W. Jones, Proc.: Workshop on Space Charge Physics in High Intensity Hadron Rings, Ed.: A. U. Luccio and W. T. Weng, AIP Conf. Proc. 448, (1998); W. Herr, M.-P. Zorzano and F. W. Jones, Phys. Rev. S.T.-AB 4054402 (2001)

