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Abstract

Bent-solenoid channels are being considered for gener-
ating dispersions desired for emittance exchange between
the transverse and longitudinal motions of a muon beam
in a longitudinal ionization cooling channel. Correct field
expansion around the reference orbit is important for reli-
able particle-tracking simulation as well as beam dynamics
analysis. This paper reviews the magnetic field expansion
for a bent-solenoid channel. In particular, ready-to-use for-
mulas for the magnetic field and its potentials are given.

1 INTRODUCTION

Bent-solenoid channels are being studied for longitudi-
nal ionization cooling of a muon beam [1] in which the
strong longitudinal magnetic field from the solenoid pro-
vides transverse focusing and the superimposed transverse
dipole field provides dispersions desired for emittance ex-
change. In addition, a quadrupole field may be superim-
posed, for example, to achieve symmetric focusing. To
study the beam dynamics in a bent-solenoid channel, mag-
netic field expansion around the reference orbit is needed.
Although general formalism for such expansion is well-
established, a reliable, ready-to-use result for bent solenoid
seems not available. Furthermore, many errors, from “ty-
pos” to technical mistakes, exist in the literature on field
expansion, as well as in computer code currently in use. In
this paper, following the approach presented in ref. [2], we
briefly review the derivation of field expansion and present
ready-to-use expressions for the magnetic field and the cor-
responding scaler and vector potentials up to the octupole
order.

2 GENERAL METHOD

The static magnetic field B in a beam pipe must satisfy
the source-free Maxwell equations in vacuum r � B = 0
andr�B = 0: It is well known that both a scaler potential
� and a vector potential A can be defined such that B =
r�A andB = �r�: To study particle transport in a beam
line, it is necessary to have a general field expression that
depends on free parameters yet satisfies Maxwell equations
in the neighborhood of a given design orbit.

2.1 Frenet-Serret Coordinate System

The Frenet-Serret coordinate system is commonly used
to describe a particle’s motion around a design orbit. Its
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base vectors are defined by the unit vectors (es; ex; ey)
of the moving trihedron that can be determined from the
Frenet formulas
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= �� ex ; e
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x
= � es + � ey ; e

0

y
= �� ex ; (1)

where the prime indicates derivative with respect to the
path length s along the reference orbit, and �(s) and �(s)
are the local curvature and torsion of the reference orbit.
(Note that, ex and ey are the opposites of the principal nor-
mal and binormal vectors commonly used in curve theory.)
We consider the most common case that the reference orbit
is a well-behaved plane (torsion-free) curve: �(s) = 0.

In the Frenet-Serret coordinate system, a particle’s posi-
tion r(s) can be written as

r(s) = r0(s) + xex + yey; (2)

where r0(s) is the reference orbit, and x and y are the trans-
verse displacements from it. A vector field A(x; y; s) can
be decomposed as

A = Axex +Ayey +Ases: (3)

Note that, in the literature, As may represent the canonical
component hA � es instead of A � es.

Vector analysis using the Frenet-Serret coordinates can
be carried out via
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where the so-called scale factor, h = 1 + �(s)x.

2.2 Scaler Potential and Recursion Formula

Expanding the magnetic field and its potentials as a se-
ries of x and y, a general magnetic field can be specified by
the expansion coefficients as functions of s. Because the
field must satisfy the Maxwell equations, those expansion
coefficients are interrelated. An important exercise is to
identify coefficients that can be chosen freely and express
the field as a function of them.

It is convenient to start with the scaler potential
�(x; y; s). Using the Taylor series, � can be expanded as

�(x; y; s) = �
1X
n=0

nX
m=0

an�m;m(s)
xn�m

(n�m)!

ym

m!
: (7)
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The Maxwell equations are satisfied if and only if the scaler
potential satisfies the Laplace equation r2� = 0. Working
out r2� using Eqs. (7, 4, 5) and expanding the result into
a Taylor series of x and y, then requiring the coefficients
to be zero, gives the recursive formula that the coefficient
functions must satisfy

an;m+2 = �an+2;m �

nX
p=0

(��)p
n !

(n�p)!

�
� an�p+1;m

+ (p+1)a00
n�p;m

�

�
p+ 2
2

�
(n� p)�0a0

n�p�1;m

�
: (8)

Although rather obscure, this formula clearly shows that,
corresponding to the even and the odd m’s, there are two
independent sets of recursion relations for an;m’s. Because
the second index m specifies the power of y in the poten-
tial expansion, the odd (even) set of coefficients defines
the normal (skew) field component whose potential is anti-
symmetric (symmetric) to the orbit plane. Furthermore,
only an;0(s) and an;1(s) can be independently chosen. All
higher-order (in m) coefficients can be derived from them.
Using these independent coefficients and the recursion for-
mula, it is straightforward, though tedious, to express the
scaler potential and the magnetic field as functionals of free
functions that characterize the field.

2.3 Independent Magnetic Field Components

The transverse components of the field on the reference
plane and the longitudinal component on the reference or-
bit are determined by the independent coefficients an;0 and
an;1 via

skew : Bx(x; 0; s) =
1X
n=1

an;0(s)
xn�1

(n� 1)!
; (9)

normal : By(x; 0; s) =

1X
n=0

an;1(s)
xn

n!
; (10)

longitudinal : Bs(0; 0; s) = a00;0(s) : (11)

Conversely, these three field components completely de-
termine the independent coefficients and the 3D magnetic
field. Furthermore, these field components can be freely
chosen.

In terms of standard (US convention) multipole coeffi-
cients an and bn defined by [3]

By + iBx =

1X
n=0

(bn + ian)(x+ iy)n; (12)

the independent coefficients of the transverse field are

an;1 =
@nBy

@xn

����
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����
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= (n� 1)! an�1 ; (14)

a00;0 � bs (15)

for the normal, skew, and longitudinal components, respec-
tively. Note that we used the absolute multipole strengths
instead of normalizing them by the dipole strength B0. Up
to the octupole order, the independent coefficient functions
are bs(s) for the solenoid component, b0(s) for the dipole,
b1(s) and a1(s) for the normal and skew quadrupoles, b2(s)
and a2(s) for the sextupoles, and b3(s) and a3(s) for the
octupoles.

2.4 Vector Potential

The vector potentialA is important in Hamiltonian treat-
ment of beam dynamics. To obtain a unique expression of
the vector potential from the scaler potential �, we choose
the gauge

xAx + yAy = 0 (16)

instead of the usual Coulomb gauge r�A = 0. Using this
gauge, we can introduce two new functions, F (x; y; s) and
G(x; y; s), to express the three components of the vector
potential as

Ax = �yF; Ay = xF; As =
G

h
: (17)

Then the magnetic field B = r�A becomes
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The equations forG and F are decoupled and can be solved
separately via Euler’s theorem for homogenous forms. It is
easy to verify that their solutions can be written as

F =

1X
n=0

1

n+ 2
B(n)
s

; (23)

G =

1X
n=1

�
1

n
+

�x

n+ 1

��
yB(n�1)

x
� xB(n�1)

y

�
: (24)

Here the superscript (n) means the nth order component.
Using the F and G expressions and Eq. (17), the vector po-
tential can be straightforwardly worked out from the mag-
netic field expansion. Here we will not spell out the expres-
sions as functions of an;m. (Note that the last expression
for F in ref. [2] is incorrect.)
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3 READY-TO-USE FIELD EXPANSION

In the previous section, we outlined the procedure to ob-
tain the Taylor expansion of a magnetic field and its scaler
and vector potentials. Although straightforward in prin-
ciple, it is a rather tedious and fallible exercise to obtain
the final expansions, especially with the dependent coeffi-
cients removed. With the help of Mathematica, we did this
exercise for the bent-solenoid channels considered for the
ionization cooling of a muon beam. We report the ready-
to-use formulas that include all field components up to the
octupole order, except for the horizontal dipole compo-
nent a0(s), which makes the zeroth-order orbit a nonplanar
curve. If the zeroth-order orbit is chosen as a reference,
�(s) = qb0(s)=ps, where q and ps are the charge and lon-
gitudinal momentum. The bending radius �(s) = j1=�j.

�(x; y; s) = a0;0 + b0 y (25)
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