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Abstract 
At the initial stage of acceleration, it is often necessary 

to create an increasing distribution of accelerating electric 
field for improving the bunching process. Such 
distributions can be created by gradually decreasing the 
coupling coefficients between the resonant volumes. In 
such bunching structures charged particles are bunched 
and accelerated by the travelling wave with increasing 
amplitude. But there is another possibility of creating 
such increasing distributions. It is well known that in 
periodic structures there are two different in basis 
electromagnetic eigen-oscillations supported by metal 
walls without external currents and charges - propagating 
and evanescent. In forbidden bands (stopbands) 
electromagnetic oscillations transfer no energy in the 
direction of periodicity and have decreasing (increasing) 
dependence on the longitudinal coordinate. Results of our 
investigations of the properties of the electromagnetic 
oscillations in the stopbands of the periodic structures are 
represented. We discuss the usage of such oscillations in 
accelerating systems for the bunching and accelerating of 
electron beams. 

INTRODUCTION 
The output characteristics of the beam at the exit of the 

accelerator is considerably influenced by the parameters 
of the injector system. An injector system based on the 
standing wave gives posibility to form high quality 
electron bunches and to accelerate them up to enough 
high energies. In the standing-wave injector systems the 
klystron bunching mechanism can be combined with 
acceleration. For this purpose it is necessary to create a 
special field distribution in which amplitude increases 
from the initial injection point and there must be 
sufficiently long gaps without field. Such distribution can 
be achieved by a selection of coupling coefficients [1,2]. 
It was shown that there is the eigen oscillation in the 
periodic structure that corresponds for so nontrivial field 
distribution [3]. It is known that in the boundless periodic 
structure two eigen electromagnetic oscillations exist. In 
the passbands eigen oscillations represent travelling 
waves moving in the opposite direction. In the forbidden 
bands, which are located between the passbands, the 
eigen oscillations have another form. In these frequency 
intervals electromagnetic oscillations transfer no energy 
in the direction of periodicity and have decreasing or 
increasing character. In the bounded periodic structure it 
is possible to create the field distribution corresponding to 
the   one   (increasing   or   decreasing)  eigen  oscillation. 
________________  
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In the case of the smooth waveguide the increasing 
distribution can   not   be   obtained   under   any   
circumstances. Under any boundary conditions in the 
smooth waveguide the amplitude of the increasing 
solution is always smaller than the amplitude of the 
decreasing one. This paper is focused on the properties of 
evanescent oscillations of two types in periodic structures. 
Results of the investigation of two bunching systems 
based on evanescent oscillations are described. 

CAVITY CHAIN 
Let�s consider the chain of cylindrical cavities coupled 

through small irises in side walls.  The distribution of 
amplitudes of 010E oscillations in the cavity chain is 
described by the set of equations of the following form 
[4]: 
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D � length and b � radius of the cavity, 0ω - resonant 
frequency. Equation (1) is true for the thin side walls. 
Equation (1) is a homogeneous difference equation of the 
second order with the constant coefficients. The general 
solution of linear homogeneous equation is equal to the 
sum of partial solutions with unknown constants: 
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The forbidden zone is determined by the condition 
1>β . The chain under consideration has two forbidden 

zones � ω<ω0, ω>ωπ. In the second forbidden zone 
(ω>ωπ) the first partial solution n

11C ρ  ( 01 1 <<− ρ ) 
corresponds to the decreasing amplitude distribution in 
the chain: 1nn1n AAA +− >> . In the case of n

22n CA ρ=  
( 12 −<ρ ) the distribution of the field has the increasing 
character: 1nn1n AAA +− << . In the bounded structure 
constants C1 and C2 are determined by the boundary 
conditions. If constant 2C  is equal to zero, then the 
decreasing distribution of the field is formed in the chain. 
The ratio 12 /CC  can be obtained from equations for the 
first and last cavities: 
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where DD /11 =ξ , DDN /2 =ξ , N � the number of 
cavities. The coefficient C2 equals zero if 01 =η  and 

02 =η . To obtain this, the length of the boundary 
cavities must be equal: 
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To form the increasing field distribution 
( ∞→= 11 0C η, , ∞→2η ), the length of the first and 
last cavities must be selected in a such way: 
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Taking into account that 121 =⋅ ρρ  one can show that 
D1+DN=D. 

BIPERIODIC CAVITY CHAIN 
Consider the case when the cavity geometric sizes and 

the irises radii are altered periodically. We denote by An 
the amplitudes of E010 oscillation in the cavities with 
length D1 and radius b1 , and by Bn amplitudes in the 
cavities with length D2 and radius b2 . We denote the iris 
radii by a1 and a2 . In difference from the cavity chain 
considered above the amplitude distribution in the 
biperiodic cavity chain is described by two equations 
[5,6]: 
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The amplitudes in (n+1) and n cavities are related by 
such conditions: 

n1n AA ρ=+ , n1n BB ρ=+     (9) 

It is easy to show that at fixed frequency Eqs(7, 8) have 
nonzero solutions for two values of the parameter ρ : 

1QQ 2
21 −±=,ρ ,    (10) 

where Q is determined by the expression: 
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The parameter ∆  is equal to the ratio 3
1

3
2 /aa . The 

analysis of the dependence of Q on ω shows that the 

stopband appears inside the passband. The minimum 
value of Q corresponds to the middle of the stopband: 
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If 21 aa =  and the cavity frequencies (including the 
coupling shifts) tend to the mean frequency of the 
stopband:  
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the intermediate forbidden zone vanishes and so-called 
structure compensation takes place [5,6]. In this case the 
creating of the increasing (decreasing) distribution 
becomes impossible. If 21 aa ≠  the intermediate 
forbidden zone does not disappear under any 
circumstances. Condition (14) is reduced to the demand 
that the working frequency must be equal to the mean 
frequency of the forbidden zone. Under such 
consideration the ratio An/Bn tends to infinity when 
ρ→ρ1. This is possible only in one case: An→0. When 
ρ→ρ2 the ratio An/Bn tends to zero, i.e. Bn→0. 

For both fundamental solutions the field distribution has 
the follows property: in a sequence of cavities located 
through one the amplitude of the field is equal to zero. 
For an increasing solution such cavities adjoin at the left 
to the diaphragm with large iris. As for the decreasing 
solution, zero field cavities adjoin at the left to the 
diaphragm with small iris.  

If we want to create the condition for supporting the 
field distribution that corresponds to the decreasing 
fundamental solution, we must bound the biperiodic 
waveguide by cavities, which have at the left the 
diaphragm with large iris. One has to make some 
frequency shift in boundary cavities too. In this case, the 
amplitude of the increasing solution is zero. If we want to 
create the condition for supporting the field distribution 
that corresponds to the increasing fundamental solution, 
we must bound the biperiodic waveguide by cavities, 
which have at the left the diaphragm with small iris. 

Thus, selecting in appropriate way boundary conditions 
for the bounded electrodynamic system, one can create 
the distribution of amplitudes that corresponds only to 
one fundamental solution. It has to be noted that it is 
possible only in the stopband. Within the passband such 
condition can not be fulfilled. 

SIMULATION 
Proceeding from the theory presented above, two 

injector systems based on evanescent oscillations were 
simulated using SUPERFISH [7] and PARMELA [8] 
codes. All simulations were held upon the electron beam 
initial energy W0=25 keV and current 50 mA with space 
charge forces taken into account. Peak value of on-axis 
electric field is 30 MV/m. 
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Waveguide section composed from five accelerating 
cells was taken for simulations of bunching system based 
on disk-loaded waveguide. It is well known that the disk-
loaded waveguide has many forbidden zones. As a 
working forbidden zone we have chosen the second 
forbidden zone of the symmetric wave. If we want to 
work in the forbidden zone, the conditions for the eigen 
frequency of the system to lay in the forbidden zone must 
be created. The simplest way of creating such situation is 
shifting the frequency of the last cell. In the second 
forbidden zone the phase shift per cell equals π (ρ<0). 
The time-transit angle per cell for particle with energy 
W=W0 was chosen equal to π

ν
ωθ 3.0== D . As a result 

of simulations, the on-axis increasing field distribution 
was obtained. The results are shown in Fig. 1. 
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Figure 1: Geometry of bunching system base on disk-
loaded waveguide and corresponding on-axis electric 

field distribution  

Electrodynamic performances of the simulated system 
are the follows: the quality factor Q=11163, shunt 
impedance Rsh=39.8 MOhm/m. Simulation of particle 
dynamics in the system has shown that the maximum 
energy is 0.779 MeV, average energy is 0.697 MeV, 
energy spectrum is 9% (70% of particle), phase length is 
32°, normalize emittance is 28 mm⋅mrad and capture is 
91.2%. 

Waveguide section composed of eleven accelerating 
cells was taken for simulations of bunching system based 
on the biperiodic waveguide. The length of one cell is two 
times smaller than the length of the cell in the previous 
case. Biperiodic waveguide having all corresponding 
sizes to be equal except iris radii was considered. The 
time-transit angle for relativistic particle was chosen 
equal to 0.3π per period. In this case the phase shift per 
period is π. The required on-axis increasing field 
distribution was obtained by periodical variations of iris 
radii and by boundary cell tunings. On-axis field 
distribution and geometry of a resonance system are 
shown in Fig 2. 

Electrodynamic performances of the simulated system 
are the follows: the quality factor Q=5446 and shunt 
impedance Rsh=10.8 MOhm/m. Simulation of particle 
dynamics in the system has shown that the maximum 
energy is 0.7 MeV, average energy is 0.57 MeV, energy 

spectrum is 27% (70% of particle), phase length is 20°, 
normalize emittance is 18 mm⋅mrad and capture is 96%. 
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Figure 2: Geometry of bunching system base on ordinary 
biperiodical waveguide and corresponding on-axis 

electric field distripbution 

CONCLUSION 
Electron beam bunching process in periodic and 

biperiodic structures has been studied. The corresponding 
field distributions are based on the evanescent waves that 
exist in stopbands of the periodic structure. Two models 
of bunching systems were considered. The possibility of 
electron beam bunching and accelerating with good 
performances has been shown. 

The authors would like to thank Kushnir V.A. and 
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