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Abstract 
The formulas for spectral-angular density of 

bremsstrahlung of relativistic electron in a thin layer of 
matter are obtained. The influence of electron multiple 
scattering on medium atoms on spectral-angular 
performances of radiation in thin amorphous target is 
investigated. It is shown, that at large values of root-
mean-square angle of multiple scattering in comparison 
with a characteristic angle of relativistic electron radiation 
the suppression of radiation effect similar to the Landau-
Pomeranchuk-Migdal effect takes place. . 

1  INTRODUCTION 
The multiple scattering of high energy electrons in a 

thin layer of matter can significantly influence the 
bremsstrahlung process. A case of large coherence length 
as compared with a target thickness is the one of 
particular interest. It was shown in [1-3] that in this case 
an effect analogous to the Landau-Pomeranchuk-Migdal 
effect is possible. An experimental investigation of this 
effect has been recently realized on the SLAC accelerator 
[4,5]. The spectral characteristics of bremsstrahlung in the 
low frequencies range have been investigated there. In the 
present work the spectral-angular characteristics of 
bremsstrahlung in a thin layer of matter are examined. 
Particular attention is paid to the condition, at which the 
bremsstrahlung suppression effect reveals itself stronger 
in the angular distribution, than in the spectral 
distribution. It is shown that at the large values of root-
mean-square angle of multiple scattering as compared 
with the characteristic radiation angle θ ~ γ-1 (where γ is 
the Lorenz factor), the angular distribution of radiation in 
the range of θ < γ-1 from the incident beam direction does 
not practically depend on the target thickness. Besides, 
the maximum of the angular distribution is situated at the 
angle θ ~ γ-1 to the initial direction of the electron beam. 

2  GENERAL FORMULAS 
The spectral-angular density of radiation of electron 

driven on the trajectory )t(r
�  is determined in classical 

electrodynamics by the expression [6,7] 
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radiated wave and 
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In a thin layer of matter the characteristic values of 
scattering angles of relativistic electron eϑ  are small in 
comparison with a unit. If the coherence length of 
radiation process is big in comparison with thickness of 
the target 
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then I
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 can be represented as [7] 
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where v�  and v ′�  are velocities of an electron before and 
after scattering. 

The spectral-angular density of electron radiation in this 
case is determined only by the scattering angle of a 
particle in matter. Putting (4) into (1), we shall obtain 
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where ϕαβ−β+α+= cos21p 22 , γθ=α , eγϑ=β , θ  
and ϕ  are polar and azimuth angles of radiation, eϑ is a 
scattering angle of an electron. The angles θ  and eϑ  are 
counted from the direction of the initial velocity of an 
electron v� . The angle ϕ  is an angle between vectors ⊥k

�

 

and ⊥′v�  in a plane, orthogonal to v� . 
The formula (5) is necessary for averaging on 

scattering angles of a particle in matter. If the distribution 
function of scattered particles )(f eϑ

�  is known, then the 
average value of spectral-angular density of radiation will 
be determined by the expression 

� οω
ϑϑ=

οω dd
Ed)(fd

dd
Ed 2

ee

2
��

.          (6) 

We shall note, that the formula (6) is fair for any targets. 
It is required only, that the target thickness was small in 
comparison with the coherence length of radiation. The 
different character of the scatterer will be exhibited only 
in a concrete kind of the distribution function )(f eϑ

�

. 
For an amorphous target particle distribution on 

scattering angles is determined by the function of Bethe-
Molière [8,9] 
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where )(d χσ  is the differential cross-section of electron 
scattering by a separate atom at a small angle χ . 

The distribution function (7) does not depend on ϕ , 
therefore in (6) the integration over ϕ  can be executed  
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At the experimental research of the spectral-angular 
density of radiation, one is usually interested in radiation 
into a definite solid angle, which is cut by a specific 
collimator. If we are interested in radiation into a small 
solid angle along the direction of an incident particle 
beam, the formula (8) should be integrated over the 
angles of radiation, which are cut by the collimator. For a 
round collimator with the collimation angle of radiation 

cθ  we have 
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For large values of cθ  in comparison with the 

characteristic values of scattering angles 2
e ϑ≈ϑ  and 

the radiation γ≈θ /1  the integration in (9) can be 
executed in general form. In the outcome we shall obtain 
a spectral density of radiation in a thin layer of matter (see 
formulas (3.3) and (3.5) in paper [3]). 

3  DISCUSSION OF OBTAINED RESULTS 
Paying attention to some features of spectral-angular 

distributions of relativistic electrons radiation in a thin 
layer of amorphous matter, let's first consider angular 
distribution of electron radiation of an in the plane 
( )v,v ′��

. Turning in (5) to the Cartesian coordinates 
)sin,cos( yx ϕα=αϕα=α , we find, that for 0y =α  
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At small values of scattering angle ( 1<<β ) 
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This formula shows, that at 1<<β  the maxima of 
angular distribution of radiation are located at 0x =α , and 
that at 1x ±=α  the spectral-angular density of electron 
radiation equals zero. The main body of the spectral 
density of radiation in this case is concentrated in the 
range of angles 1x ≈α .  

At large values of scattering angles ( 1>>β ) the angular 
distribution of radiation (10) has maxima at the angles 

1x ≈α  and 1x −β≈α , and equals zero at β−≈α /1x  and 

β+β≈α /1x . The formula (10) also shows, that the 
angular density of radiation decreases rapidly at the 
angles 1x −≤α  and 1x +β≥α , and in the range of angles 

β≤α≤ x1  the angular density of radiation has 
comparable values in a rather broad interval of scattering 
angles β  . In particular, for 10=β  the angular density of 
radiation has a minimum at 2/x β=α  with emission 
intensity in a minimum only 50 % less than emission 
intensity in maxima. It means that at 1>>β  the main body 
of spectral density of electron radiation is concentrated in 
the range of angles β≤α≤ x0 . 

At 1>>β  (5) angular density of radiation in the 
directions close to the initial velocity of a particle is 
determined by the expression 
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In this case angular density of radiation does not depend 
on a scattering angle of a particle. 

Let's consider now the influence of multiple scattering 
on angular distribution of bremsstrahlung. At small angles 
of radiation in (8) the expansion of function ( )e,ϑϑΦ  in 
terms of β  can be executed. As the first approximation of 
such an expansion the following expression for spectral-
angular density of radiation is discovered 
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This formula coincides with corresponding result of the 
Bethe and Heitler theory for spectral-angular density of 
radiation, according to which the emission intensity 
grows linearly with the target thickness increasing (see, 
for example, formula (5.9) in paper [10]).  

The target thickness increasing leads to breaking the 

condition 12 <<β , and then the account of non-dipole 
effect at radiation is required.  

At arbitrary 2β  realization of the procedure of 
averaging in (8) is possible only on the basis of numerical 
methods.   

In Fig. 1 the dependence of spectral-angular density of 
radiation from a polar angle of radiation θ at various 
values of the parameter 2β  is represented. The indicated 

curves show, that at 12 <β  the angular distribution of 
radiation has a maximum in the direction of the initial 
velocity of a particle and decreases rapidly with the 
growth of the radiation angle θ (see (13)). For 1~2β  the 
maximum of angular distribution of radiation shifts to the 
area of the radiation angles 1~ −γϑ . Then the linear 
growth of the emission intensity with the target thickness 
increasing, characteristic of the Bethe and Heitler theory, 
weakens. 
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Figure 1: Angular distribution of radiation. 

 
For 12 >β  the maximum of angular distribution of 

radiation is located in the range of angles 1~ −γϑ . The 
magnitude of the emission intensity in these maxima 
practically does not depend on the target thickness. The 
width of angular distribution of radiation, however, 
increases with the growth of the target thickness. In the 
range of angles 1−γ<<ϑ  the emission intensity decreases 

rapidly with the growth of 2β .  

At 12 >>β  the angular distribution of radiation in the 

range of angles 2β<<ϑ  is determined by the expression 
(18). In this range of radiation angles the angular 
distribution of radiation is universal, it does not depend 
on the kind of the distribution function of particles in 
scattering angles.   

In Fig. 2 the dependence of spectral density of radiation 
in the definite collimator (13) on the value 2β  is 

represented. The indicated curves show, that at 12 >>β  

for small collimation angles 2
ec ϑ<<ϑ  the spectral 

density of radiation reaches maximum value and, unlike 
the corresponding result of Bethe and Heitler (13), does 
not depend on the value 2β  (which is proportional to the 
target thickness). 

With collimation angle increasing the value of the target 
thickness, starting with which the spectral-angular density 
of radiation practically does not depend on 2β , grows. If 
the collimation angle of radiation is big enough 

( 12
ec

−γ>>ϑ>ϑ ), then the radiation density grows 
logarithmically with the target thickness increasing . In 
this case practically all the radiation of a particle hits in 
the collimator and, actually, we deal with a spectral 
density of radiation (13). 

 
Figure 2: Spectral density of collimated radiation. 

 
Thus, at 12 >>β  in the range of radiation angles 

2
ec ϑ<<ϑ  the effect of bremsstrahlung suppression 

(comparing with the Bethe and Heitler results) takes 
place. This effect is similar to the suppression effect of 
bremsstrahlung spectral density in a thin layer of matter, 
which was pointed at in works [2,3]. For spectral density 
of radiation, however, it is characteristic that the linear 
growth of emission intensity with the target thickness  
increasing  is replaced by logarithmic growth. In the case 
under consideration the linear dependence of emission 
intensity on the target thickness is replaced by the 
constant. It means, that in the spectral-angular distribution 
of radiation the effect of bremsstrahlung suppression 
appears brighter, than in a spectral density of radiation. 
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