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Abstract* 

A statistical analysis of a corrected electron trajectory 
through a planar FEL undulator is used to predict the 
optimal beam position monitor (BPM) spacing. The 
undulator is composed of modular sections, each 
containing many dipoles with random field and roll angle 
errors. Located between each section are inaccurate 
BPMs, steering correctors, and possibly quadrupole 
magnets. An analytical formula for electron-to-photon 
phase errors is derived and used to estimate the best BPM 
spacing. The results are applied to the LCLS FEL 
undulator [1], which has demanding requirements on 
electron trajectory straightness. 

1 INTRODUCTION 
The requirements on the degree of straightness of an 

electron trajectory through a SASE-based FEL undulator 
can be quite demanding. For short wavelength undulator 
radiation (1.5 Å for LCLS) a stringent requirement exists 
on the relative phase relationship between the electron 
beam and the radiated photon beam. Undulator field and 
beam position monitor (BPM) accuracy errors can make 
the electron beam travel a longer path, creating a phase-
shift with respect to the photon beam. Significant phase 
errors can move the electron beam away from resonance 
and negate the FEL gain. Since the location and number 
of BPMs along the undulator is an important factor in 
achieving a straight trajectory, it is useful to have a simple 
way to estimate the expected electron-to-photon phase 
errors and the rms trajectory amplitude, both as a function 
of BPM separation distance, BPM resolution, and pole 
field errors. Previous work [2] has examined the effects of 
pole errors, but without the effects of inaccurate BPMs. 

We derive a formula used to estimate the optimal BPM 
separation along an undulator given BPM resolution and 
pole field and roll angle errors. Misaligned quadrupole 
magnets also affect the trajectory, but steering corrections 
applied at, or near, the quadrupoles can completely 
compensate this trajectory component. Since the limit of 
this compensation is solely dependent on the resolution 
and transverse alignment of the BPMs, we ignore 
quadrupole misalignments. They are included implicitly 
in the steering corrections and the treatment of BPM 
limitations. Each quadrupole is assumed to have a nearby 
steering corrector and BPM in both planes. 

The existence of an optimal spacing can be imagined by 
considering each type of error (BPM and dipole) in 
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isolation. If the BPMs are inaccurate (misaligned or 
resolution limited), but the pole fields are perfect, then a 
closer BPM spacing forces a higher frequency trajectory 
distortion after steering correction. This produces larger 
trajectory angles between BPMs and larger phase lag with 
respect to the radiated photon beam. In contrast, steering 
correction using perfect BPMs, but imperfect pole fields, 
will generate a larger cumulative trajectory deviation 
between BPMs as the BPM spacing is increased, again 
causing an increased phase lag. BPM errors demand a 
long BPM spacing, while pole errors suggest a short BPM 
spacing (for constant undulator period). The goal here is 
to statistically estimate the optimum spacing, the expected 
trajectory amplitude, and the mean phase error. 

2 TRAJECTORY ANALYSIS 
A simplified planar undulator section is shown in 

Figure 1. The full undulator is many such sections. 
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Figure 1.  Simplified planar undulator section used to analyze 
electron trajectory. Section has length L with N/2 periods and a 
BPM and steering corrector placed between each section. 
Quadrupole magnets may be located at or near BPMs. 

The section length is L, the undulator period is λu, and 
there are N/2 = L/λu periods  over the section (N dipoles). 
A BPM and a steering element (or moveable quadrupole) 
are placed at each section boundary. For simplicity, this 
includes no period breaks, and wiggler termination is 
ignored. Quadrupole magnets, if used, are assumed to be 
placed at or near the BPMs, but are not a factor since their 
misalignments simply change the steering corrections 
required, and the focusing is not relevant for the single 
particle trajectory. An incoming betatron oscillation is also 
ignored since it can be removed at the undulator input 
with steering, or added to these results as an independent 
effect. It is assumed that no significant focusing exists 
within the undulator section, but such effects can be added 
in a modified analysis. 

A perfect undulator (and perfect initial trajectory) 
produce a nominal reference trajectory composed of the 
small wiggles associated with an undulator. This reference 
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is subtracted and only the difference trajectory, produced 
by pole errors and inaccurate steering, is examined. 

For a sinusoidal varying field with peak B0 and relative 
field errors (∆Bj/B0), each dipole error adds a transverse 
kick angle at the center of the jth dipole of 
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where (Bρ) is the standard magnetic rigidity, γ is the 
Lorentz energy factor, K is the undulator parameter, 

0 2uK eB mc� �� , m is the electron rest mass, c is the 
speed of light, and e is the electron charge. Ignoring any 
weak focusing of the undulator, each upstream kick at 
location j (0 ≤ j < N) displaces the electron beam at a 
downstream location i (j < i ≤ N) by ∆xij = θj(si − sj) 
= λuθj(i − j)/2. The sum over all upstream displacements, 
∆xij; plus the displacement, θcλui/2, produced by an initial 
beam angle, θc, at j = 0; plus an initial BPM-limited 
position, b1, produces a trajectory position at location i of 
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The angle θc is the sum of (a) an incoming angle from the 
previous section, plus (b) a correction angle used to steer 
the trajectory at the next BPM (at section’s end). The 
offset b1 is the initial e− beam position at j = 0 resulting 
from upstream steering of the trajectory to the first BPM 
offset, b1. The BPM offset can be interpreted as a 
transverse misalignment, a noise component, or both. 

The angle, θc, is defined by steering such that the next 
BPM ‘reads’ zero. Since this next BPM has a different 
random offset, b2, than the first BPM, the steering 
correction will produce xN = b2. Eq. (2) is used with i = N 
and xN = b2, to solve for θc. This is then substituted back 
into (2) and after rearrangement is put into a form where 
one sum extends from j = 0 to i − 1, and a second sum 
extends from j = i to N. The steered trajectory at any 
section location, i, is then given by 
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This is used to calculate the trajectory and phase slip over 
an ensemble of undulator sections with random errors. 

3 PHASE SLIP ERRORS 
The path length difference of an electron with speed 

v = c and angle x′ (<< 1), with respect to a photon with 
zero angle, over a length l, is given by 
∆s = l(1+x′2)1/2 − l ≈ lx′2/2. The beam angle, x′ i, through 
the ith pole to pole separation of length, λu/2, is 

� �12i i i ux x x �
�

�� � , where we approximate small kicks 
over a dipole as equivalent thin-kicks at pole centers. This 
approximation is verified in numerical studies. 

The positions xi and xi+1 are taken from Eq. (3) and after 
some rearrangement, the beam angle x′ i is written as 
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The electron-to-photon ‘phase’ error at location i is 
∆ϕi = kr∆si = krλux′2/4, where λr is the FEL radiation 
wavelength and kr = 2π/λr is the radiation wavenumber. 
The total phase error over the section (after steering using 
inaccurate BPMs) is the sum of individual phase errors. 
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We now move toward a statistical analysis of the 
trajectory and therefore consider b1, b2, and the set of 
angles θj as random, uncorrelated, zero-mean variables, 
where 〈b1

2〉  = 〈b2
2〉  ≡ 〈b2〉 , etc. This is an important step. It 

implies that the BPM errors used here are the 
uncorrelated, random component of the relative 
misalignments of two BPMs separated by one undulator 
section. This includes static, relative, uncorrelated 
misalignments as well as BPM readback noise. It does not 
include, nor should it include, any relative misalignment 
on a scale longer than an undulator section or any 
correlated component of misalignment. Realistic 
simulations of beam-based alignment (BBA) [3], over an 
undulator indicate that the relative, uncorrelated, random 
misalignment of two adjacent BPMs can be reduced to 
very nearly the fundamental BPM noise level. We, 
therefore, do not need to evaluate BPM alignment with 
respect to a straight line over the length of the entire 
undulator. We assume that BBA has been performed 
adequately, which is a typical requirement for SASE 
saturation with very short wavelength FELs. 

The mean phase error, 〈ϕs〉  (i.e., averaged over many 
random undulator sections) in Eq. (5) is now reduced 
using standard relations for the sums of powers of 
integers. The mean total phase error per section is 
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The error over the entire undulator length, Lu (= NsL), 
composed of Ns sections, is 〈ϕ〉  = 〈ϕs〉Lu/L, or 
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where we assume N2 >> 5. So far, this result includes 
trajectory errors in the wiggle-plane only. 

Equation (7) shows the tradeoffs anticipated in the 
choice of an optimum section length, L. The section 
length appears in the numerator of the pole error term 
(i.e., the 〈θ2〉  term), but in the denominator of the BPM 
resolution term (i.e., the 〈b2〉  term). Therefore, as 
described in the introduction, a shorter section length 
increases the phase lag induced by BPM errors, but 
decreases the phase lag induced by pole errors (for 
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constant period). The behavior of Eq. (7), per meter of 
undulator, is shown in Figure 2. Data points shown with 
error bars are a Monte Carlo computer calculation [4] at 
(∆B/B0)rms = 0.10 % over 1000 undulator sections, used 
for numerical confirmation of Eq. (7). 
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Figure 2.  Mean phase error per meter of undulator [Eq. (7)] vs. 
section length, L, for BPM resolution 〈b2〉1/2 = 1 µm, and pole 
errors (∆B/B0)rms=0.1% (solid/red), 0.05% (dash/blue), and 
0.025% (dash-dot/green), with λu=3 cm, λr=1.5 Å, K=3.7, 
γmc2=14.3 GeV. Points w/error bars are tracking simulations. 

The result of Eq. (7) can be differentiated with respect 
to L and set equal to zero in order to calculate the optimal 
BPM spacing, Lopt. In addition, Eq. (1) is used to make the 
result explicit in terms of the relative pole field errors. 
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For an expected level of random, uncorrelated pole errors, 
and BPM resolution, the optimum BPM spacing can be 
predicted using Eq. (8). 

This can be extended into both the x and y planes by 
adding up the phase lag values per plane, 
〈ϕxy〉  = 〈ϕx〉  + 〈ϕy〉 . The additional phase lag due to vertical 
trajectory errors is ascribed to small random pole roll-
angle errors, ψ. The total mean phase lag over the 
undulator, including both pole field and pole roll errors, is 
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Eq. (9) is simply twice that of Eq. (7) when 
〈(∆B/B0)

2〉  = 〈ψ2〉 . In this case, the optimal spacing of Eq. 
(8) is still valid. From this point on we treat the case 
where 〈ψ2〉  = 〈(∆B/B0)

2〉 , for simplicity. Now substituting 
Lopt from Eq. (8) into L of Eq. (9) gives the minimum 
mean phase lag achieved at L = Lopt. 
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If Eq. (10) is set to ≤2π as a reasonable upper limit, the 
tolerable field errors (and roll errors) are calculated, given 
the BPM resolution and radiation wavelength, λr, using 
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This result is re-substituted back into Eq. (8) and the 
optimal BPM spacing is calculated from knowledge only 
of the BPM resolution or only the field (and roll) errors. 
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In this case, the pole field (and roll) tolerances are related 
to the BPM resolution by Eq. (11). The undulator design 
can therefore be initiated using just the knowledge of the 
expected BPM resolution. Additional trajectory analysis 
and more details are available [5]. 

4 TRAJECTORY AMPLITUDE 
The rms trajectory amplitude can be similarly analyzed 

producing Eq. (13). Numerical simulations have also been 
used to verify the amplitude [5]. 
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5 CONCLUSIONS 
For an FEL undulator composed of separate sections 

bounded by BPMs, steering correctors, and quadrupoles, 
the undulator section length can be optimized analytically 
using Eq. (12), from the expected BPM resolution or pole 
field and roll errors. This assumes beam-based alignment 
is used to align BPMs with respect to their nearest 
neighbors, to the level of their resolution. Well controlled 
pole errors, as produced using shimming methods, will 
increase the optimal section length by reducing the pole 
field and roll errors. The mean beta function and its 
variation, however, must also be considered. 
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