
PyORBIT: A PYTHON SHELL FOR ORBIT

J.-F. Ostiguy∗ Fermi National Accelerator Laboratory, Batavia, IL
J. Holmes, ORNL Oak Ridge, TN†

Abstract

ORBIT is code developed at SNS to simulate beam
dynamics in accumulation rings and synchrotrons. The
code is structured as a collection of external C++ modules
for SuperCode, a high level interpreter shell developed at
LLNL in the early 1990s. SuperCode is no longer actively
supported and there has for some time been interest in re-
placing it by a modern scripting language, while preserving
the feel of the original ORBIT program. In this paper, we
describe a new version of ORBIT where the role of Super-
Code is assumed by Python, a free, well-documented and
widely supported object-oriented scripting language. We
also compare PyORBIT to ORBIT from the standpoint of
features, performance and future expandability.

INTRODUCTION

The philosophy of either embedding or extending a high-
level scripting language has become popular for scientific
applications. Typically, scientific simulation code execu-
tion time is dominated by a few computationally intensive
tasks. On the other hand, bookkeeping operations such as
data analysis and presentation represent a large portion of
the overall development effort. This effort can potentially
be significantly reduced by implementing this functionality
in an interpreted language, without significantly affecting
overall performance. It is in this spirit that ORBIT, a code
to model the dynamics of a synchrotron in the presence
of space charge, was developed at the SNS [1]. ORBIT
is structured as a collection of extension modules for Su-
perCode, an interpreted array-oriented scripting language
with a C++-like syntax originating from the early 1990’s
Fusion research program at LLNL. Unfortunately, Super-
Code is no longer actively developed and supported. In
recent years, a number of free, well-documented and stable
alternative scripting languages have emerged: Perl, Python,
Tcl, Ruby, Guile etc. All these languages have strengths
and weaknesses. Perl has already been used successfully
to build a framework integrating existing accelerator codes
[2].

WHY PYTHON ?

Among the many scripting languages, Python has the
distinction of being fundamentally object-oriented. It sup-
ports concepts such as classes, inheritance and operator
overloading. Python scripts are compiled into interpreted
bytecode. Python and C++ syntax and semantics both

∗ ostiguy@fnal.gov
† Work supported by the US Department of Energy under contract

number DE-AC02-76CH03000.

map very well into each other, making Python a particu-
larly good choice as middleware language to integrate func-
tionality implemented in C++. Commonalities between
Python and C++ can be summarized as follows [3]:

• both languages use C-family of control structures
• support for object-orientation, functional and generic

programming
• comprehensive operator overloading facilities
• collections and iterators
• support for namespaces (Python modules)
• exception handling
• Python reference semantics mirrors common C++ id-

ioms (handle/body classes, reference-counted smart
pointers)

MODULE INTERFACE CODE
GENERATION

Although Python and C++ overlap conceptually, from
a low-level implementation standpoint they differ substan-
tially. Python is implemented in C and naturally offers
a C-based API for extension. Compared to C++ and
Python, C has rudimentary abstraction facilities and no
support for exception-handling. Writing interface code
for extension modules using the C-API requires special-
ized knowledge; furthermore, the code tends to be com-
plex and hard to maintain. This has stimulated the devel-
opment of automated interface code generation or “wrap-
ping” systems. The exported module interface is specified
in a file processed by a specialized program which gener-
ates the necessary interface code without further user in-
tervention. There exists at least five systems to generate
python/C++ wrappers [4, 5, 6, 7, 8]: SWIG, SIP, CXX,
SCXX and Boost.python. SWIG was one of the first and
is probably the most widely known interface generator.
It offers comprehensive support for most of the popular
scripting languages including Python. Although support
for the Python/C++ combination has been continuously
improving, important limitations remain, one of them being
the requirement that all exported templatized functions and
classes be explicitly instantiated. The inter-language bind-
ing code produced by SWIG is also an inelegant mixture
of Python scripts and C code. SIP is very similar in phi-
losophy to SWIG – from which it was originally inspired –
but is strictly Python/C++ specific. It was developed as a
tool to produce python wrappers for the Qt library, a pop-
ular open source GUI framework. Although the results are
impressive, the SIP interface specification can be complex
and requires the programmer to write some low-level code.
CXX wraps some part of the Python C-API in C++, man-
aging the complexity using static meta-programming tech-

0-7803-7739-9 ©2003 IEEE 3503

Proceedings of the 2003 Particle Accelerator Conference

niques. SCXX started as a lightweight version of CXX. It
does not use templates and as such cannot hide as many
details of the low-level Python C-API. On the other hand,
it automates tedious error-prone tasks such as reference
counting. Boost.python has features and goals that are sim-
ilar to all the other systems. However, remarkably, it does
not introduce a separate wrapping language and interface
code generator. Rather, it makes use of C++ compile-time
introspection capabilities and advanced meta-template pro-
gramming techniques to allow interface specification to be
done in pure C++. Boost.python also goes beyond the
scope of other systems by providing the following features:

• support for C++ virtual functions that can be overrid-
den in python

• lifetime management facilities for low-level C++
pointers and references

• a safe and convenient mechanism for tying into
Python’s powerful serialization engine

• support for organizing extensions as Python packages
with a central registry for inter-language type conver-
sions

• automatic coherent handling of C++ lvalues and rval-
ues

Because of its comprehensiveness and elegance,
Boost.python was selected to implement PyORBIT.

PYORBIT IMPLEMENTATION

To facilitate the transition for users already familiar with
ORBIT, an important objective was to make the feel of the
new PyORBIT as close as possible to the existing one. This
is mostly the case, but some important differences remain.
While SuperCode is strongly typed, Python is a dynami-
cally typed language. Variables are not declared; assigning
an object to a variable creates it. All Python variables are
references to PyObjects. The practical consequence is that
an assignment statement such asa = b does not result in
a holding a copy ofb but rather in botha andb referring
to the same object on the heap. References are counted and
objects are marked for automatic deletion when no variable
refer to them (automatic garbage collection). Another sig-
nificant difference between Python and SuperCode the fact
that in Python numbers and strings are immutable objects.
If a function has arguments whose types are immutable, the
values of these arguments cannot be changed by the func-
tion. Immutability of basic data types is not as restrictive as
it might seems since Python also provides a mutable con-
tainer type (list). While the container itself cannot be
modified, the elements it contains can be.

Array Types

SuperCode defines the built-in array types Vector, Ma-
trix, and Array3D (separately for integers, double and
complex) patterned after Fortran arrays (stored in column-
major order and 1-based). These types are extensively

used in the ORBIT code and therefore have been emu-
lated. In PyORBIT, the SuperCode implementation of the
build-in array types is replaced by a new simplified tem-
platized version. Fig. 1 provides an example of how the
ComplexMatrix type interface is exported to Python us-
ing boost.python. At first glance, this may not seem like

#include <boost/python.h>
using namespace boost::python;
typedef Matrix<complex<double>

ComplexMatrix;
...

class_<ComplexMatrix > >
("ComplexMatrix", init<int,int>())

.def(init<const ComplexMatrix > >())

.def("get", &ComplexMatrix >::get)

.def("set", &ComplexMatrix >::set)

.def("__repr__",&ComplexMatrix >::print)

.def("clear", &ComplexMatrix >::clear)

.def("resize", &ComplexMatrix >::resize)

.def(self + self)

.def(self - self)

.def(self * self)

.def(self ˆ self)
;

...

Figure 1: Exporting the interface of an array datatype using
boost.python

C++ and a few explanations are in order. The construct
class_<type>(name) is simply an anonymous instan-
tiation of a templatized class namedclass_. This instan-
tiation calls the class_ constructor and passes the C++
type to it. A new python classtype is created and asso-
ciated withname in the Python registry. The syntax.def
simply denotes a call to a member function nameddef.
Becauseobject.def() returns a reference to object,
multiple calls can be chained. The resulting expression is
made more readable by taking advantage of the fact that
the compiler ignores whitespace. Note the last four.def
statements which define operator overloads.

ORBIT Modules

Exporting existing ORBIT modules to Python with
boost.python is a relatively mechanical task. The follow-
ing (simplified) code provides an example This defines the
Python classParticles and exposes its methodad-
dMacroHerd and its datanHerds. Note that the variable
nHerds is mirrored in Python by a special boost.python
object which does not have the type int. The expres-
sionParticles.nHerds = 1 in Python does not re-
sult in the creation of an immutableint object. Rather,
for objects of typeParticles, assigning a value to the
attributenHerd calls a method that sets the C++ vari-
ableParticle::NHerds. All this mechanics is com-
pletely transparent to the programmer and generated by
the boost.python library.Compiling the code in Fig. 2 ulti-
mately produces a shared object module that can be dynam-

3504

Proceedings of the 2003 Particle Accelerator Conference

#include <boost/python.h>
...
class_<Particles>("Particles")

.def("addMacroHerd",
&Particles::addMacroHerd,
"Make a main herd of macro particles")

.staticmethod("addMacroHerd")

.def_readwrite("nHerds", &Particles::nHerds)
;
...

Figure 2: Exporting the interface of an ORBIT module us-
ing boost.python

ically imported by Python, making its classes and methods
available to the interpreter.

Strings

SuperCode defines its own private string class. While
semantics of this class are close to that ofstd::string,
they are not identical. By default, Boost.python provides
automatic conversion between Pythonstr type and C++
std::string. However, it is also possible to define and
register other type conversions. This approach is used in
PyORBIT to avoid modifying the substantial amount of
code that refers to the private string class.

Function Pointers

Some ORBIT functions expect a function as an argu-
ment. Typical examples are functions used to generate ini-
tial macroparticles phase space distributions or functions
used to define an RF cavity voltage program. Using the
latter as an example, it is convenient to define a voltage
program at the interpreter level since this is a function
which is typically called once per turn. In SuperCode,
function pointers are basically C-stylevoid (*)(). In
Python,all variables and functions are references to dy-
namically allocated objects. When a call to an OR-
BIT function such asAddRampedRFCavity is executed
from Python, the arguments are effectively a list ofPy-
Object*. Boost.python introspection allows basic data
types to be converted before the C++ version ofAd-
dRampedRFCavity gets called. However, references to
functions cannot be converted i.e. there is no unambigu-
ous way to go from aPyObject* to avoid (*)(). To
emulate SuperCode syntax and behavior, it is necessary to
introduce an additional C++ wrapper function. How this is
done is illustrated in Fig. 3 where for clarity, function argu-
ments that are not relevant have been omitted. Python calls
addRampedRFCavity with a PyObject* argument.
This argument is passed through a private static variable
to a private function which in turn uses the boost.python
facility call<> to interpret the python function. Finally,
the private function is passed as regular C-style function
pointer to the original version ofaddRampedRFCavity.

void addRampedRFCavity((void(*)()) sub);

using boost::python:call;

static PyObject* RampedRFVolt_pyobjptr = 0;

static void private_RampedRFVolt()
{

call<void>(RampedRFVolt_pyobjptr);
return;

}

void addRampedRFCavity(PyObject* po)
{

RampedRFVolt_pyobjptr = po;
addRampedRFCavity(&private_addRampedBAccel);

}

Figure 3: Passing a reference to a function defined in
Python to a C++ extension module.

OUTLOOK AND CONCLUSION

Using Boost.python we have successfully transformed
ORBIT into a collection of Python modules. This has been
accomplished with minimal modifications to the original
code. PyORBIT performance is basically the same as that
of the original ORBIT since the computationally intensive
work is performed by virtually identical C++ code. A vast
amount of high quality third party libraries and modules
developed for Python have now become available to OR-
BIT users. In principle, this should allow accelerated de-
velopment of new data analysis and display facilities. Fi-
nally, through boost.python, adding new C++ modules is a
well-defined, well-documented and straightforward matter
that does not require specialized programming knowledge.
At the time of this writing, PyORBIT remains a work in
progress. While it is certainly usable as it stands, some
work remains to be done before it can be considered a pro-
duction tool, mostly in connection with exception handling
and error recovery.

REFERENCES

[1] J. Galambos et al., “ORBIT - A Ring Injection Code with
Space Charge”, Proceedings of the 1999 PAC Conference,
pp. 3143-3145

[2] N. Malitsky and R. Talman, AIP 391, 1996

[3] D. Abrahams and R.W. Grosse-Kunstleve, “Building Hybrid
Systems with Boost.Python”, PyCON 2003, Washington DC,
March 2003

[4] http://www.swig.org

[5] http://www.riverbankcomputing.co.uk/sip

[6] http://sourceforge.net/projects/cxx

[7] http://www.macmillan-in.com/scxx.html

[8] http://www.boost.org/scxx.html

3505

Proceedings of the 2003 Particle Accelerator Conference

