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Abstract

The amplification of radiation is calculated in the beam
frame for a free electron laser (FEL) with a planar or
helical undulator. The effect of the radiation force upon
the transverse electron trajectory is included; this effect
accounts for one-half of the gain in the undulator regime.
Our calculated gain agrees with conventional formulas.

1INTRODUCTION

In some FEL derivations, the effect of the radiation
force upon the transverse electron motion (“force
bunching” [1]) is neglected. When force bunching is
neglected, using a standard method for calculating the
axial velocity yields conventional gain formulas [1], while
an aternative method yields one-half of the conventional
gain [2]. Thus, it is inconsistent to assume that force
bunching is negligiblein an FEL [2].

We caculate FEL gain in the low-gain-per-pass
undulator regime, performing our analysis in the frame of
reference moving with the electron beam. In this frame,
force bunching is easily included. We show that force
bunching accounts for one-half of the bunching and gain
in the undulator regime. For planar and helical
undulators, our calculated gain agrees with conventional
expressions, in which the helical gain is twice as large as
the planar gain for a given wiggler parameter [3].

2TRANSVERSE MOTION

For amplification of a weak radiation field by an
ultrarelativistic beam, we include radiation in the
transverse dynamics to model “force” bunching [1]. We
first consider a planar undulator, in which an electron’s
velocity deviates by less than the angle 1/By from the z
axis, where y >> 1 is the relativistic factor for the beam
and 3 = 1 is the velocity divided by the speed of light c.
In an undulator, the electron motion is non-relativistic in
the frame of reference moving with the beam as it enters
the undulator, so we calculate the dynamics in this frame
using Sl units. The relativistic factor and velocity
describing this frame are denoted y; and fc.

The undulator field appears in this frame as linearly
polarized radiation traveling in the negative-z direction,
with electric field in the x-direction

Eux(zt) = Eyp cos(k, 2+ at) D
The undulator magnetic field B,,, equals —E,/c, where w,
= Bycky = cky, > 0. The undulator entrance obeys k,z+w,t
=0

T.he radiation field is also linearly polarized, traveling

* Work supported by NSF grant DM R-0084402
# bosch@src.wisc.edu

0-7803-7739-9 ©2003 |IEEE 935

in the z-direction, with
Erx(zrt) = Ero COS(k, z-wt+@ )
and magnetic field B,, = E/c, where wy = ck, > 0.
Consider an electron with constant axial velocity v,.
The forced transverse oscillation from the undulator obeys
d?x/dt? = (e/m)(L+v,/C)E,,(z(t).t) 3
where e < 0 is the electron charge and misits mass. The
undulation velocity istherefore

Vi (z.t) = -8, csin(k, 2+ wyt) s

)

4
where
a, =-€E,, / mw,c (5)
Similarly, the forced transverse oscillation velocity from
theradiationis
Vo(2.t) = acsin(k z-wt +q,), (6)
where
a = —eE,/muwc (7
Any axial velocity function may be approximated to
arbitrary accuracy by constant-velocity segments, so that
egs. (4)—7) aso apply when the axial velocity is not
constant. Since v,x = O at the undulator entrance, a
matched beam flows parallel to the axis with y; =y. Our
assumption of non-relativistic velocities requires §,, << 1.

3AXIAL MOTION

To describe “inertial” bunching, we include radiation in
the axial dynamics [1]. An electron whose initial axial
position zis 0 obeys, to lowest order in the radiation field

d?z _ e e e

dt2 = vaway +avwary +Evprwy : (8)
The solution with z(0) = dz/dt(0) = 0 is the sum of three
functions describing radiation-independent axial motion,
inertial bunching, and force bunching. The radiation-
independent motion obeys d?z,/dt? = (€/mM)Vi,, B,y where z
=V, t on the right hand side (RHS) of the equation, with v,

equaling the average axial velocity in the undulator. The
solution with z,(0) = dz,/dt(0) =0 is

z,(t) = ~BuEue (sin2dat —20t) 9)

8may, 2

where &, = w,(l+v,/c) is the undulator frequency
experienced by an electron with axial velocity v,. For &,

<< 1, equation (9) givesthe average axia velocity as
v, = -4,°cl4 (10)
Inertial bunching [1] results from the axia radiation
force on an electron, obeying d?z/dt> = (e/m)vi, B,y
where z = 7, (t) on the RHS of the equation. For &, <<1,

approximating z, (t) = vt on the RHS for the fundamental
FEL mode gives the solution with z (0) = dz /dt(0) =0
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sin(w,t - @ )+sing, —w,tcosg,
2

2(t) = ea;viEro _ @ (11)
m sm(w_t +(pr) sing, — w_tcose,
+ 2
_
where w, =&, +&, and w_=do,-&,, in which

&, =, (1-v, /c) is the radiation frequency experienced
by an electron with axial velocity v,. Since the
undulation wavelength in the laboratory is independent of
the electron’s axia velocity, the inertial bunching is also
called “axial” bunching [1].

Force bunching [1] results from the transverse radiation
force on an electron, obeying d’z/dt> = (e/m)vix By,
where z = 7, (t) on the RHS of the equation. For &, <<1,

approximating z, (t) = Vot on the RHS for the fundamental
FEL mode gives the solution with z (0) = dz /dt(0) =0
sin(w+t - (pr)+sjn(pr - w,tcosy,

2(t) = ~ %o o’ (12)
2m | sin(w.t+@)-sing —w tcosg,
2
0.

For effective amplification of radiation, co. << w,, so that

()= @ :—aréwcu)r sin((u_t+(pr)—sin(pr—(o_tcoscpr
z(t) %Zf(t) > 2

(13
In the periodic undulator field, inertial bunching and force
bunching are nearly equal when w1 << . .

4 GAIN

The change in an electron’s energy from interaction
with the radiation obeys
de
E = e'erErx + e'waErx
where vy, Vux and E, are evaluated at the axial position
Z(t) calculated in the previous section. The change in an
average electron’s energy is given by averaging over the
phase of the radiation ¢.. To order E,?, the first term on
the RHS does not contribute to this average, so that for

aW2 << 8
<d£/dt>(pr =<e'\/WXErX>(\or =

- eéWCEro
(zcosg, >(Pr { 5 (

(14)

K, cosw_t +k_ cosw+t):| (15)

+<zsin(p,>(pr [eavv(z:lz“’(hsinw_t —k_sinwg)}

wherek, =k, + k;, and k_=k,, —k; . Equation (13) gives

(zcosq, >(Pr = (1+ %JjaWE”;(sinm_t -w.t)

@r ) 4me. (16)

. (4, ) B
zsin =|1+— |——%(cosw_t -1
R
where 1+w,/wy = 2/(1-4,2 /4) for . << .
Let Ae EIT<d£/dt>¢ dt be the average energy change
0 r

per electron from interacting with radiation. Here, T is

936

the undulator transit time, obeying @,T=2mN with
integer or half-integer N equaling the number of undulator
periods. Then, for . << wy, egs. (15) and (16) give
_ €Ea/ck, T?(2-20050.T ~wTSnwT | (17)
am(1-4,2/4) 0 T8
In the beam frame, the number of electrons passing
through the undulator within a transverse area A, during a
time t, is NeAgCt,, SO that the energy transferred to the
forward wave is —n.ABct,Ae, where n, is the electron
density. The time-averaged Poynting vector of the
radiation is < S> = £,CE;,4/2, with energy density < S>/c.
Since the relative velocity between the forward wave and
undulator is (1+B)c = 2c, the electromagnetic energy
passing through the undulator is (< S>/c)(1+p)ct, A.. The
radiation energy gain per pass therefore obeys
gein = ~nABCtAE _ [—28] nAe
(S)IL+B)toA,  \1+B e E,’
Equations (17) and (18) givefor =1
nee’k,c4,’T° (2-2coswT -wTsnwT | (19)
ame, (1-4,°/4) w73
In the laboratory frame, the maximum transverse
velocity divided by c is obtained from the transverse and
axial velocitiesin the beam frame when |v,x | islargest:
Broiar = 8/ = 8, [[Y(1-3,/2)] (20)
where a,, is the wiggler parameter. The gain is given in
the laboratory to lowest order in a,:

Mot € Wyyotab B’ Liap- | 2= 2€0s0.T - . Tsinw.T 21)
2me ¢y ()
where ng 4 is the e-beam density, wy.jap = CKyjap IS the

angular undulation frequency, and L, is the undulator
length, all measured in the [aboratory frame. Here,

W.T = [Kyoiap M= 8,7 14) =k oy L+ 8,7 14)/ 2/°] Ty, (22)
where T4, = Liap/C isthe undulator transit time and K,z iS
the radiation wave number in the laboratory. For optimal
amplification, «.T = 2.61, so that for N>> 1, y>> 1 and
a,, << 1, maximum gain occurs for

Kr-tab = 2V Kotap [(L+ 8,71 2) - (23
For a,, << 1, the gain is twice as large as that resulting
from inertial bunching alone.

Ae =

(18)

gain =

SHELICAL UNDULATOR

Consider a helical undulator in the frame of reference
moving with a matched beam’'s axial velocity at the
undulator entrance. Equations (1)—(7) are supplemented
by equations describing radiation with y-polarization and
motion in the y-direction. The additional undulator
eectricfieldis

E,y (2.t) = Eyocoslk,z+ w,t +10/2), (24)
with additional magnetic undulator field B, = E, /C.
E,(zt)=Ecoslk z- ot +¢ —10/2) (25)

describes the additional radiation whose magnetic field is
Bix = —E.y/c. The undulation velocity in the y-direction is
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Vo (2.t) = =8, coslk, z+ w,t) (26)
while the forced transverse oscillation velocity from the
radiation in the y-directionis

Viy(z.t) = -accoslk z- ot +q,), 27
Since v,y # 0 at the helical undulator entrance (where
knz+w,t = 0), amatched beam hasy; <.
The axial motion of an electron whose initial axial
position zis 0 obeys, to lowest order in the radiation field
d?z_ e

- )t Sl )

+%(erBWy _VryBWX)

The solution with initial conditions z(0) = dz/dt(0) = 0 is
the sum of three functions describing radiation-
independent axial motion, inertial bunching, and force
bunching. The radiation-independent motion obeys
d?z,/dt? = (€/M)(Vux Buy — Vy Bux) Where z = vyt on the
RHS, with v, equaling the average axial velocity in the
undulator. The solution with z,(0) = dz,/dt(0) =0 is
z(t)=0,
indicating that the average axial velocity v, is zero.
The inertid bunching term obeys d%z;/dt? =
(e/m)(Vux By — Vi Bry) Where z = 0 on the RHS. The
solution with z (0) = dz /dt(0) =0is
z(t)= ea""iE’zo[sin(w_t +@)-sing —w.tcosq |
ma.

(28)

(29)

(30)

where . = w, — W .

The force bunching term obeys d?z/dt?> =
(&/m)(VixBuy —ViyBuw) where z = 0 on the RHS. The
solution with z (0) = dz /dt(0) = O is

2(t) = =50 [dn(w t + ¢, ) -sing, ~w.tcosq] - (3)
moo_
Thus,
~ i )t + -sng, — .t
a(t)::fmzf(t):—a,awcw{sn(w w)-sne, o ﬂ

(32)
Since w, /oy =1 for w << w. = w, + W, force bunching
accounts for one-half of the bunching.
To order E, 2,
(de/dt) ) = (evucEr + ¥y Ery)
¢ @ (33)
= —eéWCEroh(COSQ)_t<ZCOS(pr >(Pr -sinw_t(zsing, >(Pr )

wherek, =k, + k, and

ayEro [
(zcosq, ) :(1+(‘)W]eawro(s|nw_t—w_t)
@ Wy 2mw_2 (34)
: _[1. @ |€8Er
<zsm(pr>q)r -(1+er2rm)_2(cosw_t—l)

The average energy change per electron when w._ << wy is

937

Ae=

m 0 378
For a helical FEL, the time-averaged Poynting vector of
the radiation is <S> =gE,’, With energy density
< S>/c. Since the relative velocity between the forward
wave and undulator is (1+B)c, the electromagnetic energy
passing through the undulator is (< S>/c)(1+p)ct, A.. The
radiation energy gain per pass therefore obeys

gein = - n.Act,Ae :(—BJ nde

<S>(1+B) toAy 1+B EOErOZ

Equations (35) and (36) givefor =1

_ ne’k,ca,’T3( 2-2cosw.T -w.Tsinw.T 37)
" ome 0’73 '
(o] )_

In the laboratory frame, the transverse velocity divided
by c obeys

_ €°E, 78, ck, T® [2 -2c0s0.T - w.Tsnw.T ] . (35)

(36)

ga

Briab = aw/v = &4/ (38)
where a,, is the wiggler parameter and vy is the relativistic
factor for the beam. Using the relation 1y? = (1+a,))/y’
we obtain the gain to lowest order in a,

Mot €2 Why—1an 8 Liap {2 -2cos.T - w.Tsnw.T } (39)

me ¢y (1)
where
W_T = [Kyotap ~ K —iap 1+ 8,,7) /2] CTig (40)
Maximum gain occurs for
Kctab = 2V Kya /(1 +3,°) - (41)

The gain is twice as large as that from inertial bunching
alone, and twice as large as that of a planar FEL with the
same wiggler parameter. Our gain expression agrees with
the conventional expression for ahelical FEL [1].

6 SUMMARY

For planar and helical FELs, we have calculated the
gain in the beam frame in the low-gain-per-pass undul ator
limit. Inertial and force bunching give equal contributions
to the gain in the undulator regime. For planar and helical
undulators, our calculated gain agrees with conventional
expressions in which the helical gain is twice as large as
the planar gain for a given wiggler parameter.
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