
PROTON THERAPY TREATMENT ROOM CONTROLS USING A LINUX
CONTROL SYSTEM

J.Katuin
Indiana University Cyclotron Facility, Bloomington, IN 47408, USA

Abstract
The Indiana University Cyclotron Facility (IUCF) is in

the process of completing the building of the Midwest
Proton Radiotherapy Institute (MPRI). The design of
MRPI�s proton therapy system required the development
of several control systems responsible for delivery of
proton beam to a patient and patient positioning. One
such control system is the Treatment Room Controller.
This system allows for management of the other control
systems, and is the primary user interface to the proton
therapy system. This control system was developed with
a Linux operating system, the KDE/QT widget sets for the
user interface, and the KDevelop IDE. The control
software uses the unixODBC API to provide an interface
to a MySQL database for record and verify functions and
for history functions. The control system also uses the
Comedi driver library so that a National Instruments PCI
DAQ card can be used to interface to various treatment
room devices.

MPRI PROTON THERAPY SYSTEM
CONTROLS DESCRIPTION

 The MPRI Proton Therapy System (PTS), as shown in
Fig. 1, is designed to provide proton therapy using two
primary control lines, the Beam Delivery Line and the
Patient Handling line. Both lines contain sub-systems
with their respective control systems that together provide
proton therapy to a patient. Such systems are grouped
into two categories, Beam Delivery, and Patient Handling
[11].
 The Beam Delivery Group is responsible for proton
beam delivery, dose monitoring, and radiation safety.
This group is composed of the Beam Delivery System
(BDS), the Dose Deliver System (DDS), the Kicker
Enable System (KES), and the MPRI Interlock and
Radiation System (MIRS).
 The Patient Handling Group is responsible for patient
positioning and position verification of a target. This

Figure 1: The Proton Therapy System.

0-7803-7739-9 ©2003 IEEE 1068

Proceedings of the 2003 Particle Accelerator Conference

group is composed of the Patient Positioning System
(PPS), the Robot Interface and Position Verification
System (RIPVS), and the X-Ray System.
 The Treatment Room Control System (TRCS), an Intel
Pentium based computer system, provides clinic
personnel with the primary user interface for the PTS
system for implementing and managing the treatment
process. The TRCS accomplishes this by providing the
interface with the Clinic Information System for treatment
requirements and results.
 When a treatment process is initiated, the TRCS
retrieves the Treatment Planning Package from the Clinic
Information System. This package contains treatment
specific parameters, instructions, and files used for
treatment by the various systems in the PTS. The TRCS
downloads the elements of the package to the respective
systems, and then verifies the information for correctness.
Upon completion of a fraction the treatment events are
sent back to the Clinic Information System in the form of
a History Package, including x-ray images, log files, and
corrections.
 The TRCS also inspects the installation of treatment
specific devices such as apertures, boluses, and ridge
filters that are associated with a patient using bar code
identification and limit switches. The TRCS will also
display nozzle position by providing a signal from a
potentiometer mounted to the nozzle assembly. The
TRCS will monitor energy setup by analyzing hall probe
data from a switching magnet located in the Beam
Delivery System. This monitoring will allow for an
independent check on the energy setup in the BDS.

OPERATING SYSTEM AND SOFTWARE
DESIGN

Operating System
 A requirement of the control system design was to use
a Linux operating system so that during the development

phase of the project there could be an X- windows
mechanism for monitoring other PTS control systems that
had X-server capabilities. Also, a Linux operating system
provides flexibility during the development of the TRCS
by allowing remote logins, free development tools, and a
relatively stable multitasking environment for
applications. The Linux operating system needed to
conform to an accepted standard. The intent was to
ensure that the kernel release would allow for simple
implementation of open source components such as the
unixODBC and Comedi drivers. Consequently, SuSe 8.1
[1] was chosen for the operating system since it follows
the United Linux Standard [2].

Software Design
 The software requirement for the TRCS was to provide
a GUI application called the �Treatment Room Manager�
(TRM). The architecture of this software, as shown in
Fig. 2, was to be divided into 5 groups, Patient Data
Group, which handled patient/treatment information in the
form of Treatment Package and History Package,
Treatment Management, which handles direct therapy
treatment commands from the Radiotherapy Technologist
(RTT), the Maintenance Group, which allows for testing
and configuration of the system, the Communications
Group, which manages the communications and treatment
requests to and from the other PTS systems using TCP/IP
sockets, and the DAQ Group, which handles the analog
and digital input/output signals, as well as control logic.
 The application GUI uses the KDE and QT widget sets
[3][4]. Consequently, the user interface was designed with
several user interface screens. TRM uses an Explorer
Layout, as shown in Fig.3. Access to such screens is
controlled through user specific privileges.

TEST COM

P A TIE N T D A T A G R O U P

TR E A TM E N T
M A N A G E M E N T G R O U P

R TT

C O M M U N IC A TIO N S
G R O U P

M A IN T E N A N C E G R O U P
(N ot used by the R TT)S Y S TE M T E S TIN G

M aintenance
In form ation
(U sed by an

E ngineer)

C lin ic
In form ation

S ys tem

Patie
nt S

etup

T reatm en t C ontro l

PTS

R IP V S
X-R A Y S Y S TE M

D D S
B D S

F ILE TR A N S F E R

TRM

T rea tm ent
C om m ands

DAQ Communications

K E S
M IR S

D A Q

Treatm en t P lann ing
P ackage

H is tory P lann ing P ackage

Figure 2: Software Architecture.

1069

Proceedings of the 2003 Particle Accelerator Conference

Figure 3: TRM GUI screen for the Treatment
Management.

Since the application is written in C++, the QT and KDE
widget were easily implemented. Also, the QT and KDE
widget sets provide a signal/slot mechanism, which
allows for simple inter-process and event driven
communications [5].
 KDevelop 2.1[6] was chosen as the development
environment because it provides open source application-
building tools that allow for rapid development of X-
windows programs. Since the TRM application uses QT
widgets for each screen, basic screen layout was
accomplished using QT Designer [7], and then the
widgets were added to the TRM project for compilation.

Database Interface
 Early in the development of the TRM the actual
database server was undefined, so a more general solution
to the database interface was sought. Consequently,
unixODBC [9] was chosen so that the code would require
little to no changes regardless of the database server
platform. Currently, the TRM interfaces to a MySQL
Server in the MPRI Clinic Information System. Although
the unixODBC web site provides some basic code
examples, it lacks information on all of the API calls
available to the unixODBC driver. However, this driver
is compatible to Microsoft�s ODBC references found at
Microsoft�s MSDN web site under Data Access[10].
Consequently most ODBC API calls described by
Microsoft are applicable to the unixODBC.

Data Acquisition and Control
 Data Acquisition and control for reading the magnet
hall probe, nozzle potentiometer, and various limit
switches was accomplished using a National Instruments
PCI-6025E card. This card was chosen for the number of
digital I/O channels, and analog channels. National
Instruments recommends the use of the open source
Comedi driver [8]. This driver package provides libraries
for both real-time and non real-time Linux releases and
can be used with a wide range of DAQ card manufactures.

The TRCS required both sets of libraries for the control
application. The non real-time library (Comedilib [8])
was used for TRM because the DAQ and control
requirements are non-critical, and the TRM is a user space
application. A time critical feature was specified as a
health signal to the KES, which oscillated at a fixed
frequency of 10 hertz. If KES does not receive the signal
then beam delivery into the treatment room will stop.
 A kernel module was written using the real time library
(Kcomedilib [8]). This module received a software health
signal from TRM through a Char driver file [12], which
allows user space/kernel space application
communication. The TRM processes that need
verification of operation were summed in intervals that
were acceptable to the kernel module, which in turn
allowed the kernel module to continue outputting a signal
to the KES. The significance of this arrangement was that
both drivers could communicate with a single NI card,
and that the timing output of the kernel module was a
consistent 10 hertz. If the TRM is disabled for any reason
then the health signal will stop.

CONCLUSIONS
 The TRCS has been designed using Linux and open
source resources and standard hardware to meet the clinic
requirements of MPRI�s PTS. The tools are available at a
minimal to no cost to developers of such a system. The
development environment available with KDevelop and
the KDE and QT widget sets allow for relatively fast
application development. The unixODBC driver provides
a means by which a programmer can create database
applications that are server platform independent. The
Comedi driver package provides a means of programming
DAQ cards in a Linux environment, including kernel level
applications. Support for this work is provided by the
State of Indiana, Indiana University, the DOE (Grant No.
DE-FG-02000ER62966) and the NIH (Grant No. CO6
RR17407).

REFERENCES
[1] http://www.suse.com
[2] http://www.unitedlinux.com
[3] http://www.kde.org
[4] http://www.trolltech.com
[5] http://www.trolltech.com/products/qt/whitepaper
[6] http://www.kdevelop.org
[7] http://www.trolltech.com/products/qt/designer.html
[8] http://www.comedi.org
[9] http://www.unixODBC.org
[10] http://msdn.microsoft.com/library/
[11] http://www.ni.com/linux/daq_comedi.htm
[11] J. Katuin & A.N. Schreuder, Proc. CAARI 2002,

Denton, TX (2002) to be Published.
[12] Rubini & Corbet, �Linux Device Drivers, 2nd

Edition�, O�Reilly, June 2001

1070

Proceedings of the 2003 Particle Accelerator Conference

