
LONGITUDINAL SPACE-CHARGE EFFECTS IN A RETARDING FIELD 
ENERGY ANALYZER  

Y. Zou*, Y. Cui, I. Haber, M. Reiser and P.G. O'Shea, Institute for Research in Electronics and 
Applied Physics, University of Maryland, College Park, MD 20742, USA

Abstract 
Experimental and theoretical work has been carried out 

to study the longitudinal space-charge effects in a 
retarding field energy analyzer. A one-dimensional model 
for both a mono-energetic beam and a thermal beam has 
been developed for this purpose. The study shows that, if 
the current density inside the device were higher than a 
critical value, the longitudinal space-charge effects would 
distort the measured energy spectrum.  The measured 
mean energy will be shifted toward the low-energy side 
and the resulting spectrum will have a tail at the high-
energy side. The measured FWHM and rms energy spread 
may also be affected.  

INTRODUCTION 
In order to characterize the energy spread in UMER [1], a 
retarding field energy analyzer has been developed and 
tested. The design and testing results of the device have 
been reported elsewhere [2, 3]. During the experiment, it 
was found that, when the current density in the analyzer is 
higher than a certain value, the measured energy spectrum 
is shifted towards the low-energy side compared to the 
one measured with low injected current. Fig. 1 depicts 
such a case, where Curve I is for a low-current case and 
Curve II is for a high-current case. At the same time, the 
energy spectrum measured with high current density has a 
tail at high-energy side. This is believed to be due to the 
longitudinal space-charge force in the device. The mean 
energy shift due to the space-charge effect was observed 
before in studies of the energy spread in a beam from an 
ion source, for example see Refs. [4, 5]. Ref. [6] gave an 
approximate analytical solution to explain the space-
charge effect in the ion source, the result of which is 
similar to the Langmuir-Child equation. In this paper, we 
will, via analytical analysis and simulations, present new 
results for the longitudinal space-charge effect in this kind 
of devices.  
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Fig. 1. Experimental result of energy spectrum. Injected 
current for Curve I is 0.2 mA, for Curve II is 2.2 mA. 

FIELD SOLUTIONS FOR A MONO-
ENERGETIC BEAM 

The potential distribution in such a system is described 
by a one-dimensional Poisson equation: 

                                                              
     

(1)                                
 

Here, C is a constant defined as                               . J is 
the current density and ε0 is free space permittivity. V is 
the potential relative to the lab ground and V0 is the 
voltage equivalent of the injected beam energy. The 
general solutions to this differential equation can be 
solved under three different regimes. The first regime is 
that Vr is a small negative voltage relative to the lab 
ground, in which case the potential distribution has a 
minimum with magnitude smaller than V0. In the second 
regime, Vr is moderately large such that the potential 
decreases monotonically from ground to Vr. The third 
regime is that Vr is large enough such that the magnitude 
of the potential minimum is equal to V0. This is equivalent 
to the virtual cathode formation in the electron gun and 
the beam particles start to be reflected back by this 
potential bump [7].   

The solution to the first regime is given by 
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for Xm<z<dr.. 
Here 1 04c CJ= , where J0 is the injected current 
density. Xm is the location of the potential minimum; c2 is 
an unknown constant. dr is the total length of the device. 
Xm and c2 are determined by the boundary condition: 
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In the second regime, the potential decreases 
monotonically from zero to Vr and the solution is given 
by: 
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where c1 is the same constant as in the first regime and c2 
is an unknown constant determined by the boundary 
conditions. 

In the third regime, the virtual cathode forms. The 
potential distribution is given by 
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and       
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Here J1 and J2 are given by 
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In Eqs.(6) and (7), the unknown constants are Xm and p, 
which are determined by the boundary conditions. The 
formation of the virtual cathode only happens when the 
beam current density inside the energy analyzer is larger 
than a limiting current. The magnitude of the limiting 
current is given by 
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which has the same format as Child’s law. For 
convenience, we introduce a concept of normalized 
current density λ=J0/Jlim, the ratio of the injected beam 
current density to the limiting current density Jlim. Fig. 2 
shows the energy analyzer response to a monoenergetic 
beam with beam energy of 5 keV and normalized input 
current density of 0.8 and 1.4 respectively. For λ=0.8, the 
spectrum reveals the real beam spectrum, while for higher 
current, λ=1.4, the energy spectrum is shifted towards the 
low-energy side due to the space charge. 
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         Fig. 2. Spectrum at different current densities. 

FIELD SOLUTIONS FOR A THERMAL 
BEAM 

At the entrance of the energy analyzer, the thermal 
beam has the following initial phase-space distribution 
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where )2/( iBTkm=α  is related to the beam energy 
spread. v0 is the mean beam velocity. f0 is the 
normalization factor. After particles enter the energy 
analyzer, the distribution becomes: 
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The Poisson equation for the system is written as: 
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for 0<z< Xm, and 
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for Xm<z<dr.. 
Here, Vm is the magnitude of the potential minimum. In 
Eq. (12), the contribution of particle density comes from 
both forward particles and backward particles reflected 
back from the potential minimum at Xm. In Eq.(13), there 
are only forward particles.  

Eqs. (12) and (13) can be numerically solved with 
appropriate boundary conditions. One example of the 
simulation results is shown in Fig. 3, where the input 
beam has mean energy of 5.070 keV and rms energy 
spread of 2.2 eV. The normalized current density λ is 
0.062 and 1.2 respectively. Fig. 3(a) depicts the potential 
distribution for retarding voltage Vr= -5070 V. For small 
current (λ=0.062), The potential monotonically decreases 
from ground to Vr. For large space charge (λ=1.2), the 
potential distribution has a potential minimum, which is 
about 7 V below the retarding voltage. Fig. 3(b) shows the 
calculated spectrum for λ=0.062 and λ=1.2 respectively. 
At small current density, the device can reveal true beam 
spectrum, which has the rms energy spread of 2.2 eV. At 
high current density case, the spectrum is shifted towards 
the low energy side by 20 eV and becomes a delta 
function with zero energy width. In this case, the 
information of the rms energy spread and FWHM is 
totally lost. This is due to the abrupt formation of the 
potential minimum in the one-dimensional theory. In the 
real device, the potential at the beam edge will not be 
depressed as deeply as predicted by the one-dimensional 
theory. To illustrate this two-dimensional consideration 
without putting the effort to have a full 2D simulation, we 
build a simple model to have a 2D correction. At the 
center of the beam, we use the calculated value based on 
the 1D theory. At the edge of the beam, we set the value 
as V=w*Vm+(1-w)*Vr, which is the weighted average of 
the potential minimum, Vm and the retarding potential Vr. 
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In between, the potential increases quadratically from the 
center value to the edge value. This implies that we 
assume the particle density is uniform inside the beam. 
Fig. 3(c) depicts the result of this correction, which has a 
wider spectrum, and with a tail at the high-energy side. In 
this calculation, w is chosen as 0.685. This simple 
analysis shows the difference between the two-
dimensional situation and the 1D theory. It indicates the 
necessity to have a full two-dimensional simulation. 
Another limitation of the theory is that this is a steady 
state solution. In reality, both magnitude and position of 
the potential minimum oscillate [8]. This will also make 
the energy spectrum wider than a delta function in the real 
situation.      
 

-6000

-5000

-4000

-3000

-2000

-1000

0

0 0.005 0.01 0.015 0.02 0.025 0.03

Po
te

nt
ia

l (
V)

Distance (m)

λ=0.062

λ=1.2

(a)

 

0

0.2

0.4

0.6

0.8

1

5040 5050 5060 5070 5080 5090

R
el

at
iv

e 
Pa

rti
cl

e 
D

en
si

ty

Beam Energy (eV)

Curve ICurve II

(b)

 

0

0.2

0.4

0.6

0.8

1

5040 5050 5060 5070 5080 5090

R
el

at
iv

e 
Pa

rti
cl

e 
D

en
si

ty

Beam Energy (eV)

Curve ICurve II

(c)

 

Fig. 3. (a) Potential distribution. (b) Energy spectrum. 
Curve I for λ=0.062, curve II for λ=1.2  (c) Energy 
spectrum with 2D correction. Curve I for λ=0.062, curve 
II for λ=1.2   

CONCLUSION 
The experimental and theoretical study shows that, if 

the current density inside the device is high enough, the 
space-charge effect could impact the performance of the 
energy analyzer. Specifically, the longitudinal space 
charge has three effects on the measurement. First, it will 
make the measured mean energy shifted toward the low-
energy side. Second, it will cause a tail at the high-energy 
side. Third, it will affect the accuracy of FWHM and rms 
energy spread measurement. These effects are the artifacts 
of the device and we should avoid them in the experiment. 
According to the theory, if the normalized current density 
is below a critical value (λ=0.5), the longitudinal space-
charge force does not affect the measurement any more. 
Therefore, we should keep the current density inside the 
device low for reducing the space-charge effect. The 
limitation of the theory lies in that this is a one-
dimensional theory and we only solved the steady-state 
solution. A two-dimensional simulation with a PIC code 
is under way to study this problem in more detail. 
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