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Abstract

Wiggler insertions are expected to occupy a significant
portion of the lattice of the Next Linear Collider (NLC)
Main Damping Rings (MDR) and have a noticeable im-
pact on the single-particle beam dynamics. Starting from
a realistic 3D representation of the magnetic fields we cal-
culate the transfer maps for the wigglers, accounting for
linear and nonlinear effects, and we study the beam dynam-
ics with particular attention paid to the Dynamic Aperture
(DA). A DA reduction is observed but appears to remain
within acceptable limits.

INTRODUCTION

The need for a larger momentum compaction in order to
tame the effects of collective instabilities has motivated a
redesign of the current NLC MDR lattice [1]. The strength
of the magnetic field in the dipoles was decreased causing
a reduction of radiation loss and therefore requiring longer
wiggler insertions to maintain the desired damping. The
wiggler insertions now occupy about 61.6 m of the 300 m
ring circumference (up from 46.2 m) adding further linear
and nonlinear perturbations to the lattice. An accurate as-
sessment of these effects is desirable in order to obtain a
proper tuning of the linear lattice and determine the im-
pact on the Dynamic Aperture (DA). A sufficiently large
DA is required for a good injection efficiency (at injec-
tion the NLC MDR’s should be capable of accommodating
a beam with 150 mm-mrad normalized emittance in both
transverse planes and a full width ±1% energy spread).

A previous study [2] showed that the effects of the wig-
gler nonlinearities in the earlier design of the NLC MDR
lattice while noticeable did not introduce unacceptable
degradation of the DA. The study made use of a suitable
fitting of the magnetic field in the wiggler midplane and
a simplified symplectic integrator for tracking the orbits of
individual particles. A similar conclusion was reached after
a first investigation of the new lattice [1] that was carried
out with the wigglers modelled as sequences of standard
elements (combined function dipoles, thin octupoles, and
drifts). The parameters for these standard elements were
tuned in such a way as to reproduce the same horizontal and
vertical kicks through a wiggler period as obtained from the
more accurate symplectic integrator technique employed
earlier.

In this paper we report on a further study on the new lat-
tice using a method that makes some improvements on the
field representation and avoids some of the simplifications
in the integrator mentioned above. The method requires
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one component of the magnetic field (for instance obtained
with the aid of a magnet design code) on the surface of a
cylinder coaxial to and contained within the wiggler aper-
ture. This is sufficient information to determine the field in
the interior of the cylindrical surface in the form of a full 3D
multipole expansions, properly accounting for the longitu-
dinal dependence of the fields. Upon suitable truncation
of this series expansion we determine the corresponding
transfer map through third order in the dynamical variables
using the code MARYLIE3.0 [4].

WIGGLER FIELD ANALYSIS

In a current-free region the magnetic field can be
expressed in terms of a scalar potential ψ, which solves
the Laplace equation. For a periodic structure of period
λw the most general such scalar potential can be written
in cylindrical coordinates as ψ =

∑∞
m=0 ψm(ρ, z) sinmφ

+ term proportional to cosmφ, where ψm(ρ, z) =∑∞
p=−∞ e2πipz/λwIm (2πp/λρ) bm,p, Im are the modified

Bessel functions, and bm,p arbitrary coefficients. The
terms proportional to cosmφ correspond to the ’skew’
components of the fields, are absent in a error-free planar
wiggler and will be neglected here. The azimuthal number
m = 1, 2, 3... corresponds to the dipole, quadrupole, sex-
tupole, ... components (the m = 0 solenoidal term is also
absent in an ideally built wiggler). Alternatively, one can
express ψm as a power series in the radial variable ρ in the
form: ψm,(ρ, z) =

∑∞
�=0(−1)� m!

22��!(�+m)!
C

[2�]
m (z)ρ2�+m,

where C
[2�]
m (z), defined by C

[2�]
m (z) =

(−1)�

√
2π

1
2mm!

∑∞
p=−∞ e2πipz/λw

(
2πp
λw

)2�+m

bm,p, is

the 2� derivative of C [0]
m (z) ≡ Cm(z). We will refer to

the functions Cm(z) as ‘generalized gradients’. A field
expansion in the current-free region is uniquely determined
by specification of the generalized gradients.

Suppose the radial component of the magnetic field is
given on the surface of a cylinder of radius R in terms
of the Fourier series Bρ =

∑∞
m=0Bm(R, z) sin(mφ).

Then, it can be easily shown that the coefficients
bm,p are related to the Fourier integral B̃m,p =
1

λw

∫ λw

0
dze−i2πpz/λwBm(R, z) of the field data Bm by

bm,p = B̃m,pλw/ [2πpI ′m(2πpR/λw)]. Notice that be-
cause of its exponential behavior the Bessel function I ′m
in the denominator of the above expression has a filtering
effect on high frequency noise possibly present in the field
data [3].

A full 3D field map for a MDR wiggler period is avail-
able based on the preliminary design discussed in [5]. The
wiggler period is λw = 27 cm, the magnetic field peak
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value 2.1 T . Because the (anti-)symmetry of the fields un-
der a 180o rotation is enforced exactly only the 2(2n + 1)
harmonics are present (dipole, sextupole, decapole, ...).
Analysis of the radial component of this field at R = 9 mm
results in the profiles of the generalized gradients shown in
Fig. 1.
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Figure 1: Generalized gradients Cm(z) for one period of
the MDR wigglers corresponding to the dipole m = 1 (A),
sextupole m = 3 (B), and decapole m = 5 (C) field com-
ponents. The reference orbit is also reported (D).

MAP COMPUTATION

As an alternative to integrating the equations of motion
for the individual particles we use knowledge of the mag-
netic fields for a wiggler period to determine the corre-
sponding transfer map. We carry out the calculation in a
canonical framework using the deviations coordinates from
the reference orbit. This requires going through the follow-
ing steps: determination of the vector potential associated
with the field 3D multipole expansion, calculation of the
reference orbit, re-expansion of the vector potential (and
Hamiltonian) as Taylor series with respect to the deviation
coordinates. The Hamiltonian in the latter form is then suit-
able for calculating the transfer map upon solving the equa-
tion of motion - a task carried out by MARYLIE3.0 built-in
routines. The resulting map through third order has the
Lie representation M = · · ·M exp(: f3 :) exp(: f4 :),
where M is the 6 × 6 matrix describing the linear part
of the dynamics, while the f�’s are homogeneous polyno-
mial of degree � in the dynamical variables. The matrix
M depends only on the quadratic part of the Hamiltonian;
f3 depends also on the cubic part; f4 also on the quartic
part. These two generators are connected to quadratic (and
higher), cubic (and higher) terms of the map in Taylor form
respectively. For straight magnetic elements (in which the
reference orbit follows the magnet axis) each individual
2n−pole component of the magnetic field contributes only
to the f� generator with � ≥ n (the main contribution is
absorbed by the generator with � = n while the contribu-
tion to the generators with � > n is related to the z-varying
part of the generalized gradient - a fringe effect). However,

because in wigglers the reference orbit deviates from the
z−axis, expressing the field in the deviation coordinates
(from the magnet frame coordinates) produces a cascade
of feed-down terms affecting the generators with � < n
as well. For example, a sextupole component introduces a
correction to the linear part of the dynamics (one can think
of this term as a quadrupole-like component); a decapole
component affects f4 (octupole-like), f3, (sextupole-like),
etc. These feed-down terms are weighted by increasing
powers of the deviation xr(z) of the reference orbit from
the wiggler axis. Because for wigglers in high energy ma-
chines this amplitude is fairly small (xr(z) ≤ 0.6 mm in
our case), in practice for each multipole component only
the first feed-down term, which is proportional to xr(z), is
significant. For this reason not including higher order mul-
tipoles above the decapole in the field representation (as
we do) does not affect the calculation of the 3rd order map
substantially.

An insight into the relevant terms of the map can be ob-
tained from a simplified analytical calculation under the
assumption that the particle orbits (in the deviation vari-
ables) do not deviate considerably from straight lines. In
such a model the sextupole and decapole components of the
field contribute to the dynamics only through feed-down
terms. In particular, integrals of the sextupole feed-down
term (proportional to xr(z)C3(z)) contribute to the linear
part of the map introducing defocusing horizontally and fo-
cusing vertically, while integrals of the decapole feed-down
term (proportional to xr(z)C5(z)) represent the main con-
tribution to the cubic part of the map. No quadratic or quar-
tic terms appear (as would be case for ordinary sextupole
or decapole magnets) because the integrals of the C3(z)
and C5(z) vanish over a wiggler period. As for the dipole
field component, its main effect is to add linear focusing in
both transverse planes through the integrals of terms like
xr(z)C

[2]
1 (z) - essentially a fringe-effect. The net result

on the linear dynamics is significant focusing in the verti-
cal plane (the sextupole feed-down and dipole fringe-field
terms add up) and relatively small defocusing in the hori-
zontal plane where the dipole fringe-field and the sextupole
feed-down terms have opposite sign (with the latter pre-
vailing slightly). In spite of the approximation involved
this simple model appears to be in good quantitative agree-
ment with the MARYLIE numerical calculation for the lin-
ear part of the map and reasonable qualitative agreement
for the nonlinear part. In particular, the MARYLIE calcula-
tion confirms that the dominant nonlinearities are of third
order (octupole-like).

In the absence of a detailed design for the ends of the
wiggler insertions we used a model consisting of bending
magnets and two thin octupole and sextupole lenses.

DA STUDY

The new MDR lattice is discussed in detail in [1]. For
this study we switched off the rf cavities and did not in-
clude any errors in the magnets or wigglers. Tracking was
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carried out element by element using the MARYLIE sym-
plectic integrator. In particular, tracking through the wig-
gler insertions (consisting of 6 full periods in addition to
entry and exit ends) was done by propagating the parti-
cle orbits through each individual period, using the maps
determined from the field data - as discussed in the previ-
ous Section. All the other elements where modelled using
the MARYLIE standard element library with the inclusion
of the MARYLIE built-in modelling of fringe-field effects
in the hard-edge limit. In this study the physical aperture
of the vacuum chamber (8 mm radius in the wigglers, 20
mm everywhere else) was not accounted for. The DA of
the MDR lattice is affected by both the sextupole magnet
and wiggler nonlinearities. An assessment of the relative
impact of the two sources of nonlinearities is obtained by
comparison of the two pictures of Fig. 2. These and the
following figures show the DA through 500 turns in the
x − y plane located in the middle of the first quadrupole
magnet downstream the injection point (the beta-functions
are about βx = 16 m and βy = 1.6 m). The particles
are launched at this location with vanishing transverse mo-
menta. The half-ellipse corresponding to 15× the injected
beam size - a plausible DA target - is also shown. Fig. 2A
is relative to a lattice in which the wiggler nonlinearities
are artificially masked away (sextupoles dominate); Fig. 2B
refers to a lattice with the sextupoles turned off (wigglers
nonlinearities dominate).
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Figure 2: On momentum DA with wiggler nonlinearities
turned off (A) and chromatic sextupoles turned-off (B)

The combined effect of chromatic sextupoles and wig-
gler nonlinearities on the dynamic aperture are shown in
Fig 3A for on-momentum particles and Fig.’s 3B and 3C
for off-momentum particles (+1% and −1% respectively).
The 15σ boundary appears to be mostly respected by on-
momentum particles while a somewhat larger degradation
of the DA is observed for off-momentum particles.

Finally, Fig. 3D shows the on-momentum DA for a rep-
resentation of the wiggler periods constructed using com-
bined function dipoles of length λw/4 and thin octupoles.
The peak field in the dipoles was set to 2.28 T, so as to give
the design integrated squared field strength while the field
gradient (-1.66 T/m, defocusing horizontally) was adjusted
to give a linear transfer map for one wiggler period close
to the map calculated by numerical integration through the
wiggler field (the individual entries of the linear matrix en-
tries deviate less than 1%); the strength of the octupole
lens was tuned to fit the : x4 : Lie generator of the same
map. Both maps result in similar horizontal and vertical
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Figure 3: Dynamic aperture for model with wiggler map
integrated through fields (A,B,C) and model using standard
elements (D) - on momentum.
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Figure 4: Horizontal (A) and vertical (B) kicks through one
wiggler period from map calculated by integration through
actual fields (dots) and map constructed from standard ele-
ments (line).

kicks through a wiggler period (Fig.4) - with some notice-
able discrepancies emerging (not shown) when both x �= 0
and y �= 0 - a reflection of the fact that the nonlinear gen-
erators of the two maps (in particular those related to x− y
coupling) are not identical. Nevertheless, on-momentum
the DA aperture resulting from using the standard element
model for the wiggler (Fig. 3D) does not appear very differ-
ent from that resulting from the more accurate modelling
(Fig. 3A). However, a larger discrepancy can be noted in
the off-momentum cases (not shown) with the calculation
done using the standard-element model giving a somewhat
more pessimistic estimate of the DA.
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