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Abstract

An operational, beam-based, null-measurement, control
room procedure designed to steer the closed orbit through
the effective (no steer) center of every quadrupole is de-
scribed. Performance of the procedure is simulated using
UAL (Unified Accelerator Libraries). Matching SNS hard-
ware availability, quadrupole strengths are assumed to be
trimmable, but only in families, not individually. The ac-
curacy of the procedure is unaffected by geometric and/or
electrical misalignment of BPM’s (beam position monitors)
but calibration of their misalignments is a byproduct of the
procedure. Some of the many possible failure mechanisms
have been modeled, and have been found not to invalidate
the procedure.

DEFINITION OF THE TASK

We are concerned with steering the closed orbit through
the centers of all quadrupoles. Magnet imperfection may
cause significant displacement of the effective quadrupole
center (position of no particle deflection) from its geomet-
ric center and electronic imperfection may cause significant
displacement of the effective BPM center (position the data
acquisition system reports to be zero) relative to its center.

In this report, to avoid ambiguity, when “center” is used,
be it quad center or BPM center, the meaning will always
be effective center that is meant. From the control room
the absence of steering is the determinant of beam pas-
sage through effective quadrupole center and output of zero
from the BPM is the determinant of beam passage through
the effective center of the BPM. The present paper de-
scribes a control room, beam-based, procedure that is inde-
pendent of the installed BPM alignment and can therefore
corroborate, or even supercede, the installation accuracy.

An ideal arrangement would supply every quadrupole
with a full “detector/adjuster package” consisting of trim
winding, horizontal and vertical kickers, and horizontal and
vertical BPM. There is a natural “null measurement” opera-
tional procedure that can be performed using a quadrupole
(call it quad i, and let its inverse focal length be q i) en-
dowed with such a package. Taking the quad effective cen-
ter as origin, let the closed orbit position be (xi, yi). The
effect of the quadrupole is to cause angular orbit deflections

∆x′
i = −qixi, ∆y′

i = qiyi. (1)

The effect of making fractional change f (absolute change
fqi) in the quadrupole’s strength is to introduce a further
kink (δ∆x′

i = −fqixi, δ∆y′
i = fqiyi) that changes the

closed orbit. This changes not only local position (xdi, ydi)
but also the complete set of closed orbit measurements at

all Nd BPM locations, (xdj , ydj), j = 1, 2, ..., Nd. A sim-
ple operational procedure is then to adjust the local kicker
values to “null out” this closed orbit change; the kicker
strengths will be δx′

i = −δ∆x′
i, δy′

i = −δ∆y′
i. In prin-

ciple the nulling could employ a single BPM (which need
not be the i’th) but a more robust (less subject to noise)
procedure would be to average numerous BPM’s. From
the available data one obtains

xi =
δx′

i

f qi
, yi = − δy′

i

f qi
. (2)

This information can be used to center the beam on the
quad, or more practically, if there is a local BPM, to cal-
ibrate the BPM so that its electrical center coincides with
the quad center, both horizontally and vertically. The BPM
will then serve as a secondary, or transfer, standard. Af-
ter all BPM’s have been calibrated in this way they can be
used for a grand smoothing that puts the beam through the
centers of all quads. Even if a quad lacks a BPM the closed
orbit can be adjusted to pass through the quad center, pro-
vided there is a local steering elements that can be used for
the null measurement.

Unfortunately, in practice, all quadrupoles are not nec-
essarily supplied with the full detector/adjuster package.
In the case of SNS, though there are trim windings on
all quadrupoles, the quadrupole trims are not individually
powered. Rather the quadrupoles are grouped in families
of 8 having trim windings powered from a single power
supply. The purpose of this report is to generalize the null
calibration procedure in this circumstance and to simulate
its performance using UAL.

ORBIT SMOOTHING ALGORITHMS

It has to be assumed that there is a control program
which uses Nd detectors (BPM’s) and Na adjusters to
smooth the orbit, say horizontally, where “smooth” may
mean that all measured offsets are zero. More commonly
there is a redundantly generous distribution of BPM’s so
that Nd > Na, so the “badness”

B(δx′
1, δx

′
2, . . . , δx

′
Na

) =
Nd∑

id=1

x2
id

β
(x)
id

(3)

can be minimized but not be made to vanish. Here
B is expressed as a function of the adjuster deflections
δx′

1, δx
′
2, . . . , δx

′
Na

since they are the quantities to be var-
ied in order to minimize B. Mathematically this leads to
the equations

∂B

∂(δx′
ia

)
= 0, ia = 1, 2, . . . , Na. (4)
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In this report the UAL algorithm (TEAPOT module) that
simulates orbit smoothing is called hsteer and the cor-
responding vertical algorithm is vsteer. Programs like
this rely on the optical model of the lattice to calculate
an “influence function” Tia(id) which is the closed orbit
displacement at detector id caused by unit deflection at ad-
juster location ia. Starting from closed orbit displacements
x

(0)
id

, the effect of applying kicks δx′
ia

is to produce dis-

placements x
(0)
id

given by

xid√
β

(x)
id

=
x

(0)
id√
β

(x)
id

+
Na∑

ia=1

δx′
ia

Tia(id). (5)

Letting Q = (δx′
1, δx

′
2, . . . , δx

′
Na

)T be the (transpose of
the) vector of unknowns and substituting Eq. 5 into Eq. 4
yields equations (in matrix form)

MQ = V, (6)

where

Mab =
Nd∑

id=1

Ta(id)Tb(id), Va = −
Nd∑

id=1

x
(0)
id√
β

(x)
id

Tia(id).

(7)
Solving Eq. 6 yields kicker values which minimize the bad-
ness.

BPM ALIGNMENT AT SNS WITH
QUADRUPOLES GANGED IN FAMILIES

Consider, for example, the family consisting of the
Nq(=8) quadrupoles labeled QFH in the SNS lattice
shown in Fig. 1 for which the MAD lattice description
file is BmBasedBPMAlign.mad. This file differs only
from file ff sext latnat.mad by name changes made
for the present simulation. Both files are available at
http://www.ual.bnl.gov, along with a detailed de-
scription of the simulation. The task is to measure all
Nd horizontal misalignments and all Nd vertical misalign-
ments. Of course there are also many other quadrupoles,
grouped in other families. The procedure described here
is immediately applicable to all such families. It is not
even required that all nominal quadrupole strengths in the
same family be equal or that the fractional trim strengths be
equal. But, for this report, these simplifications have been
made.

The strategy to be followed is much the same as with a
single quadrupole trim. An intentional systematic change
of the strengths of the quadrupoles in a single family causes
the closed orbit to shift because of the (random and un-
known) displacements of the quadrupoles in the family.
Using an orbit smoothing algorithm the associated kicker
magnets can be adjusted to undo this change. Then the indi-
vidual quad misalignments can be inferred from the kicker
strengths and the nominal quadrupole strengths using Eq. 2.
At that time all BPM offsets would be recorded to enable
subsequent use of the BPM’s as ”secondary standards”.
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Figure 1: SNS lattice showing the particular family
of quadrupoles used in the paper to illustrate beam-
based quadrupole alignment when quadrupoles cannot be
trimmed individually. The QFH elements are half-quads.
In real life the BPM’s and kickers would be somewhat dis-
placed from the actual full quads.

Concentrating first on the horizontal measurement, it is
essential now to restrict the adjusters being used to pre-
cisely those associated with the quadrupoles in the QFH
family. Therefore Na = Nq. For noise suppression it
would be appropriate to use Nd >> Nq but, for simplicity,
we assume Nd = Nq . So from here on the term “per-
fectly smooth closed orbit” is equivalent to B = 0 where
B is given by Eq. 3 with Nd = Nq . Because Na = Nd,
the number of Eqs 4 is equal to the number of unknowns.
Therefore the equations have a unique solution. If the lat-
tice were ideal (except for the misalignments being inves-
tigated) this would be the end of the story. But because of
coupling and nonlinearity, when the calculated kicker val-
ues are installed the value of B is still found to differ from
zero. This may necessitate proceeding by successive ap-
proximation.

In any case one eventually achieves the result B = 0,
be it in simulation or in the control room. Repeating, for
emphasis, what has already been implied, this only means
that the orbit is perfect as far as the QFH detectors are
concerned. Let us refer to this restricted closed orbit as the
“QFH closed orbit”. The orbit shown by all BPM’s in the
ring will not necessarily improve in the successive approx-
imations described in the previous paragraph. In fact, our
simulation shows that the closed orbit at points outside the
QFH family frequently is made worse by a next approxima-
tion. Though disconcerting this is what is to be expected.

In the control room the QFH closed orbit appears to
be perfectly smooth when all BPM outputs from the QFH
family are zero. But this only means that the closed orbit
has been adjusted to pass through the electrical centers of
every QFH detector.

Next we apply the systematic fractional strength change
f to all quadrupoles in the QFH family. This causes
the QFH closed orbit to be no longer smooth. Apply-
ing hsteer and vsteer again yields the kicker strengths
needed to re-smooth the orbit. Finally the misalignments
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being sought are given by Eq. 2. This completes the de-
termination of closed orbit displacement relative to quad
centers at all quads in the family.

FUNDAMENTAL LIMITATIONS

As with all operational procedure, the BPM calibration
can be compromised by world realities. Some BPM’s may
not function at all and electronic noise will cause fluctua-
tion of the measured positions. These effects are perhaps
the ones most likely to limit the practicality of the proce-
dure being described here. For this procedure the absolute
accuracy of BPM’s is irrelevant, but it is important that their
least count correspond to a very small distance—or rather
that they be capable of stably and reproducibly recording
very small beam position changes.

Another practical complication is that BPM’s, though
physically close to their associated quadrupoles, cannot be
precisely superimposed. But, provided they are reason-
ably close and that signals are available from other nearby
BPM’s, values can be accurately interpolated to the precise
quadrupole locations. Even if vertical quads are restricted
to vertical focusing quad locations, and horizontal to hori-
zontal (as is common) there are reliable interpolation pro-
cedures to produce the signals assumed in this report. Simi-
larly, even though kickers are not precisely in their ideal lo-
cations, the kicker strengths can be appropriately adjusted.

There are other more fundamental effects that potentially
limit the practicality of the proposed method. The effect of
increasing a quadrupole strength is not just to cause a steer-
ing effect proportional to the quad offset. There are also
changes in the lattice optics, both tunes and beta functions.
At worst the change in quad strength could make the lattice
unstable and, at a minimum, the changes in lattice optics
will cause the closed orbit fitting programs to be somewhat
inaccurate. Such a limitation is already present in the single
quadrupole procedure. In the interest of increased signal
to noise ratio one wishes to make the quad strength incre-
ment fqi as large as possible, but the need to limit lattice
distortion forces one to compromise. Nonlinear elements
present in the ring also limit the accuracy of the procedure.
Nonlinear elements would not affect the one quadrupole,
null measurement, but their presence reduces the accuracy
of the closed orbit algorithms. All effects mentioned in
this paragraph are subject to investigation using UAL or
another simulation code. Our (very limited) investigations
started with the guess that a one percent alteration of quad
strengths (f = 0.01) would be satisfactory. At this level we
find the algorithm to be essentially unaffected by changing
the chromaticities from their natural (all chromaticity sex-
tupoles off) values to being zero in both planes. Similarly
the procedure is little affected by the inclusion or exclusion
of magnet imperfections at anticipated levels.

The achievable accuracy can be estimated as follows.
Let us concentrate on vertical orbit smoothing. If the lat-
tice is taken to consist of nothing but 90 degree FODO cells
and the tune is Q there will be 8Q quads altogether, each

with its local BPM. But of these only half are close to verti-
cal quads where their accuracy is high and only about half
of those are favorably located relative to a particular ver-
tical steering that is being nulled. If the r.m.s. position
error at a quad of strength qi is σy , the r.m.s. deviation of
the deflection to be nulled for trim factor f is fq iσy . The
downstream displacement caused by such a deflection is

σd

∼
< βtyp.fqiσy (8)

For individually trimmed quads the 2Q “useful” detectors
would improve the nulling precision by a factor 1/

√
2Q.

The effect of being forced to trim the Nq quads in a family
will exact a loss of accuracy which will erode this factor
to 1/

√
2Q/Nq. Incorporating this estimate in Eq. 8, using

the estimate βtyp.qi ≈ 1 and solving for σy yields

σy

∼
>

σd

f

√
Nq

2Q
, (9)

as the estimated accuracy with which the closed orbit can
be steered through the quadrupole center. Taking the square
root factor as 1, the precision with which the orbit can be
steered through the quad is approximately the BPM preci-
sion eroded by factor 1/f . With f being of order 0.01 the
steering accuracy is 100 times worse than the measurement
accuracy. To achieve 0.1 mm steering accuracy will require
something like 1 µm BPM reproducibility. Note, though,
that it is short term reproduceability not absolute or even
long term relative accuracy that is required. Perhaps the re-
quired precision could be attained using very low frequency
excitation with lock-in detection. Least count precision of
the steering power supplies may also be an issue, as the
required deflections are very small.

CONCLUSIONS AND COMMENTS

An algorithm for centering the beam on all quadrupoles
has been described. The algorithm is applicable even when
multiple quad trims are powered from the same bus. Some
effects that could potentially cause the algorithm to fail
have been investigated. Sextupoles of strength needed to
adjust chromaticities to zero have negligible effect. So
also do the random and systematic magnetic field errors
assumed in the only lattice file investigated.

Other effects, potentially more limiting, have not been
investigated. A simulation such as this one could, however,
anticipate the degree to which this calibration procedure
would be reliable. Electronic noise and stability could be
estimated and included. Also instrumentation issues such
as the required least count precision of analog to digital
conversion could be addressed.
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