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Abstract

In the MiniBooNE experiment, a simple linear algorithm
is used to maintain the correct beam position throughout
the beamline and at the target. The algorith is explained,
and key features of the implementation are discussed.

INTRODUCTION

Experience has shown that in any fixed target experiment
at Fermilab, the primary beam tends to “drift” over time.
There are many causes for this drift, such as diurnal vari-
ation in temperature affecting control cards. Traditionally,
it was the role of the operations group to monitor the beam
position and make apropriate corrections.

When several HEP programs are run simultaneously, the
number of operators needed to monitor the beamlines be-
comes large. Additionally, the work is extremely tedious—
watching several monitors, making small corrections (and
usually only being able to correct one position at a time).
Even when features such as “three bumps” are incorpoated
in the control system, an operator can only adjust one posi-
tion at a time.

Thus, making corrections to a beamline is a job well
suited to automation. The response of the beam to chang-
ing individual magnets can be well characterized; the beam
can be continuously monitored; appropriate limits can be
placed so that the program “calls an expert” (for example,
by setting an alarm) if conditions change too severely.

THE ALGORITHM

The algorithm used is simply the inversion of a set of
linear equations.

A set of magnets, b, and a set of beam positon monitors,
x, are chosen. As each magnet is varied, the change in
beam position at each beam position monitor is recorded.
This leads to the linear expression:

δx = Mδb (1)

To implement the algorithm, one simply inverts the equa-
tion. Note that cross-plane coupling is naturally accomo-
dated in this algorithm.

Exact Solution versus Least Squares Fit

One will note that in order to implement the algorithm,
the matrix, M , must be invertable. A commonly asked
question is “Why not implement a least-squares fit?” There
are several reasons to choose an exact solution over a least-
squares fit:
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• An exact solution is just that—it always puts the beam
where it should be, not just close.

• Having more beam position monitors than adjustable
magnets provides no additional usable information.

• Having more adjustable magnets than beam positon
monitors implies that at some point along the beam-
line the trajectory is not known.

• The algorithm will fail if any one BPM fails. This is
good—when instrumentation breaks it must be fixed.

Reasonable people may disagree with the relative mer-
its of an exact solution versus least squares fit. Ultimately,
one must make a decision and evaluate the outcome. Ex-
perience with the exact solution algorithm at Fermilab has
shown that it is highly reliable [1], and thus was chosen for
MiniBooNE.

General Implemenation Concerns

Although inverting the set of equations gives an exact
solution, the measured changes in beam position are never
exact. Thus, one should never implement the full calculated
change every spill. The present correction program also
allows the user to specify a tolerance and a convergance
factor for each beam position.

Thus, the corrections will not be applied unless the beam
position is out of tollerance at one or more locations. The
tollerance is usually 2 to 3 times the RMS position change
during stable running, although at tight apertures the toller-
ance is smaller. Furthermore, only a fraction of the correc-
tion (typically 80%) is made.

Additionally, one must check that beam is actually
present when the measurement is made, and that no magnet
will beset beyond its operating limit.

IMPLEMENTATION SPECIFIC TO
MINIBOONE

The generic name of the program is “Autotune”. Vari-
ations of this program will be implemented for various
beamlines as needed; the MiniBooNE autotune is the first.
Autotune written in Java using a client-server model. The
server part runs inside an Apache Tomcat servlet engine.
The client runs on a user’s desktop and communicates with
the server via Xml-Rpc.

The Autotune Server

The Autotune server runs continuously inside an Apache
Tomcat servlet engine. In simplest terms, it is an infinite
loop that monitors the position of each beam pulse and, if
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necessary, computes and makes new settings for the trim
magnets.

For the MiniBooNE beam, a complication is the fact that
the beam is composed of a series of “pulse trains”. Each
pulse train contains a set of pulses arriving at 15 Hz in-
tervals, with the trains separated by 2-3 seconds. Trying
to correct each individual pulse at that rate is not feasible.
Consequently, the pulses in each train are averaged and the
correction applied before the next pulse train arrives.

The average of the pulses is a weighted average of the
positions of each pulse in the train. The weight for each
pulse is determined by a combination of the intensity and
position of that pulse. Three weighting algorithms are cur-
rently defined:

• Use the intensities only. All pulses below a threshold
intensity are given a weight of zero; those above are
given a weight of one. Note that if all the weights are
zero, we effectively assume that no beam is present.

• Compute an initial set of weights and the average po-
sition using the above algorithm. Any pulses farther
from this average than a threshold distance are reas-
signed a weight of zero, and the average position re-
calculated.

• Like the above, but the threshold distance is based on
a multiple of the rms of the initial average, rather than
being a simple constant.

The parameters used for monitoring and controlling the
beam (averaging algorithms, cut thresholds, lists of BPMs
and trims to monitor, the matrix, etc.) are stored in a set of
“control files” (implemented as a set of relational database
tables). Any number of control files may be kept. The op-
erators may load, unload, and modify the files as necessary.

The control loop operates as follows:

1. Initialize. Load the control file designated as “active”,
and initiate data acquisition.

2. Wait for a pulse train to arrive.

3. Get the position and intensity of each pulse as returned
by each position/intensity monitor.

4. If any returned an error code, goto step 2. Else calcu-
late the average position of the beam at each monitor.

5. If the average position of each pulse is within tol-
erance at each monitor, then no tuning is ncesssary.
Goto step 2.

6. If the average position of any pulse is farther from the
nominal than a given limit then we will not move the
beam. Goto step 2. Rationale: if the beam is too far
from the desired position at any point, it is assumed
that the operating conditions have changed, or that
something is seriously amiss. In either case operator
intervention is indicated.

7. We will attempt to move the beam. Compute the
change in trim magnet settings using the algorithm de-
scribed in section 2. Note that the deltas in the settings
are multiplied by the convergence factor (setion 2.2).
The convergence factor is currently a constant; in the
future it may be made a function of the distance of the
beam from the nominal. This would effectively merge
steps 6 and 7.

8. Get the current setting of each magnet and add the
delta computed above.

9. Set the new current for each trim magnet. Note that
the operators have the option to suppress this step.
This allows them to confirm that the calculations are
correct before taking the program “live”.

10. Goto step 2.

Testing indicates that the above loop takes about 200-300
ms.

The Autotune Client

The autotune client runs on a user’s desktop and graph-
ically displays the progress of the above loop. The hori-
zontal and vertical position of the beam between adjacent
monitors is indicated by a color-coded line: Green if the
position is within tolerance at both monitors, Yellow if the
intensity is low (at either monitor), Red if the position is
out of tolerance (at either monitor).

Control buttons and dialog boxes are provided to allow
the user to:

• Tell the server to suppress the setting of the trims (step
9) in the above loop.

• View the current readings (and possibly settings) in
tabular format. This provides a more analytic view
than the graphical display on the main screen.

• Create, modify, delete and load control files.

• Designate certain individuals (e.g., operators) as hav-
ing the authority to make changes to the control files.

• View a log file of beam settings. That is, the server
will keep a log of the times it has moved the beam.
This gives an operator the opportunity to restore the
trims to a prior state.

CONCLUSION

A simple algorithm has been implemented to correct for
beam motion in the MiniBooNE experiment. The algo-
rithm is easily extended to other beamlines.
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