INTENSE SHEET BEAM STABILITY PROPERTIES FOR UNIFORM PHASE-SPACE DENSITY*

Edward A. Startsev and Ronald C. Davidson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

Abstract

A self-consistent one-dimensional waterbag equilibrium $f_{b}^{0}\left(x, p_{x}\right)$ for a sheet beam propagating through a smooth focusing field is shown to be exactly solvable for the beam density $n_{b}^{0}(x)$ and space-charge potential $\phi^{0}(x)$. A closed Schrodinger-like eigenvalue equation is derived for small-amplitude perturbations, and the WKB approximation is employed to determine the eigenfrequency spectrum as a function of the normalized beam intensity $s_{b}=$ $\widehat{\omega}_{p b}^{2} / \gamma_{b}^{2} \omega_{\beta \perp}^{2}$, where $\widehat{\omega}_{p b}^{2}=4 \pi \widehat{n}_{b} e_{b}^{2} / \gamma_{b} m_{b}$ is the relativistic plasma frequency-squared and $\widehat{n}_{b}=n_{b}(x=0)$ is the on-axis number density of beam particles.

SHEET BEAM EQUILIBRIUM WITH UNIFORM PHASE-SPACE DENSITY

We consider an intense sheet beam [1], made up of particles with charge e_{b} and rest mass m_{b}, which propagates in the z-direction with directed kinetic energy $\left(\gamma_{b}-1\right) m_{b} c^{2}$ and average axial velocity $V_{b}=\beta_{b} c=$ const. Here, $\gamma_{b}=\left(1-\beta_{b}^{2}\right)^{-1 / 2}$ is the relativistic mass factor, c is the speed of light in vacuo, and the beam is assumed to be uniform in the y - and z - directions with $\partial / \partial y=0=\partial / \partial z$. The beam is centered in the $\mathrm{x}-$ direction at $x=0$, and transverse confinement is provided by an applied focusing force, $F_{x}^{f o c}=-\gamma_{b} m_{b} \omega_{\beta \perp}^{2} x$, with $\omega_{\beta \perp}^{2}=$ const in the smooth focusing approximation. The transverse dimension of the sheet beam is denoted by $2 x_{b}$, and planar, perfectly conducting walls are located at $x= \pm x_{w}$. The particle motion in the beam frame is assumed to be nonrelativistic, and we introduce the effective potential $\psi(x, t)$ defined by

$$
\begin{equation*}
\psi(x, t)=\frac{1}{2} \gamma_{b} m_{b} \omega_{\beta \perp}^{2} x^{2}+\frac{1}{\gamma_{b}^{2}} e_{b} \phi(x, t) . \tag{1}
\end{equation*}
$$

The Vlasov-Maxwell equations describing the selfconsistent nonlinear evolution of $f_{b}\left(x, p_{x}, t\right)$ and $\psi(x, t)$ can be expressed as [2]

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+v_{x} \frac{\partial}{\partial x}-\frac{\partial \psi}{\partial x} \frac{\partial}{\partial p_{x}}\right) f_{b}=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}=\gamma_{b} m_{b} \omega_{\beta \perp}^{2}-\frac{4 \pi e_{b}^{2}}{\gamma_{b}^{2}} \int_{-\infty}^{\infty} d p_{x} f_{b} \tag{3}
\end{equation*}
$$

As an equilibrium example $(\partial / \partial t=0)$ that is analytically tractable, we consider the choice of distribution function

$$
\begin{equation*}
F_{b}\left(H_{\perp}\right)=\frac{\widehat{n}_{b}}{\left(8 \gamma_{b} m_{b} \widehat{H}_{\perp}\right)^{1 / 2}} \Theta\left(H_{\perp}-\widehat{H}_{\perp}\right) \tag{4}
\end{equation*}
$$

where $H_{\perp}=p_{x}^{2} / 2 \gamma_{b} m_{b}+\psi^{0}(x)$ is the transverse Hamiltonian, $\Theta(x)$ is the Heaviside step-function, and $\widehat{n}_{b}, \widehat{H}_{\perp}$ are positive constants. Evaluating the number density $n_{b}^{0}(x)=$ $\int_{-\infty}^{\infty} d p_{x} F_{b}\left(H_{\perp}\right)$, we readily obtain

$$
n_{b}^{0}(x)=\left\{\begin{array}{cl}
\widehat{n}_{b}\left[1-\psi^{0}(x) / \widehat{H}_{\perp}\right]^{1 / 2},-x_{b}<x<x_{b} \tag{5}\\
0, & |x|>x_{b}
\end{array}\right.
$$

Here, the location of the beam edge $\left(x= \pm x_{b}\right)$ is determined from

$$
\begin{equation*}
\psi^{0}\left(x= \pm x_{b}\right)=\widehat{H}_{\perp} \tag{6}
\end{equation*}
$$

where $\psi^{0}(x=0)=0$ is assumed. It is useful to introduce the effective Debye length λ_{D} defined by

$$
\begin{equation*}
\lambda_{D}^{2}=\frac{\gamma_{b}^{3} \widehat{H}_{\perp}}{4 \pi \widehat{n}_{b} e_{b}^{2}}=\frac{1}{2} \frac{\gamma_{b}^{2} \widehat{\omega}_{0}^{2}}{\widehat{\omega}_{p b}^{2}} \tag{7}
\end{equation*}
$$

Here, $\widehat{v}_{0}=\left(2 \widehat{H}_{\perp} / \gamma_{b} m_{b}\right)^{1 / 2}$ is the maximum speed of a particle with energy \widehat{H}_{\perp} as it passes through $x=0$. Substituting Eq. (5) into Eq. (3) then gives

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\psi^{0}(x)}{\widehat{H}_{\perp}}\right)=\frac{1}{\lambda_{D}^{2}}\left(\frac{1}{s_{b}}-\left[1-\frac{\psi^{0}(x)}{\widehat{H}_{\perp}}\right]^{1 / 2}\right) \tag{8}
\end{equation*}
$$

in the beam interior ($-x_{b}<x<x_{b}$). Equation (8) is to be integrated subject to the boundary conditions $\left[\psi^{0}\right]_{x=0}=$ $0=\left[\partial \psi^{0} / \partial x\right]_{x=0}$. For physically acceptable solutions to Eq. (8), the condition $\left[\partial^{2} \psi^{0} / \partial x^{2}\right]_{x=0}>0$ imposes the requirement that s_{b} lies in the interval $0<s_{b}<1$, where $s_{b}=\widehat{\omega}_{p b}^{2} / \gamma_{b}^{2} \omega_{\beta \perp}^{2}$. The regime $s_{b} \ll 1$ corresponds to a low-intensity, emittance-dominated beam, whereas the regime $s_{b} \rightarrow 1$ corresponds to a low-emittance, space-charge-dominated beam. In solving Eq. (8), it is convenient to introduce the dimensionless variables defined by

$$
\begin{equation*}
X=\frac{x}{\lambda_{D}}, \quad \widehat{\psi}^{0}(X)=\frac{\psi^{0}(x)}{\widehat{H}_{\perp}} \tag{9}
\end{equation*}
$$

Substituting Eq. (9) into Eq. (8), integrating once, and enforcing $\left[\psi^{0}\right]_{x=0}=0=\left[\partial \psi^{0} / \partial x\right]_{x=0}$, gives

$$
\begin{equation*}
\frac{1}{2}\left(\frac{d \widehat{\psi}^{0}}{d X}\right)^{2}=\frac{1}{s_{b}} \widehat{\psi}^{0}+\frac{2}{3}\left[\left(1-\widehat{\psi}^{0}\right)^{3 / 2}-1\right] \tag{10}
\end{equation*}
$$

in the interval $-x_{b} / \lambda_{D} \leq X \leq x_{b} / \lambda_{D}$. Equation (10) can be integrated exactly to determine X as a function of $\left(1-\widehat{\psi}^{0}\right)^{1 / 2}=n_{b}^{0}(X) / \widehat{n}_{b}$ [see Eq. (5)]. We express $X=$
$\int_{0}^{\widehat{\psi}^{0}} d \widehat{\psi}^{0} /\left(d \widehat{\psi}^{0} / d X\right)$, change variables to $z=\left(1-\widehat{\psi}^{0}\right)^{1 / 2}$, and make use of Eq. (10). This gives [1, 3]

$$
\begin{equation*}
X=3^{1 / 2} \int_{\left(1-\widehat{\psi}^{0}\right)^{1 / 2}}^{1} \frac{z d z}{\left[(1-z)\left(a^{+}-z\right)\left(z-a^{-}\right)\right]^{1 / 2}}, \tag{11}
\end{equation*}
$$

where a^{+}and a^{-}are defined by

$$
\begin{equation*}
a^{ \pm}=\frac{1}{4 s_{b}}\left\{3-2 s_{b} \pm\left[3\left(3+4 s_{b}-4 s_{b}^{2}\right)\right]^{1 / 2}\right\} . \tag{12}
\end{equation*}
$$

From Eqs. (6) and (11) we obtain a closed expression for x_{b} / λ_{D} in terms of the normalized beam intensity s_{b} for the choice of equilibrium distribution function in Eq. (4). The areal density of the beam particles, $N_{b}=\int_{-x_{b}}^{x_{b}} d x n_{b}^{0}(x)$, for the density profile in Eq. (5) can be expressed as

$$
\begin{equation*}
N_{b}=2 \widehat{n}_{b} \int_{0}^{x_{b}} d x\left[1-\psi^{0}(x) / \widehat{H}_{\perp}\right]^{1 / 2} . \tag{13}
\end{equation*}
$$

Some algebraical manipulation that make use of Eqs. (9), (10) and (13) gives

$$
\begin{equation*}
\frac{N_{b}}{2 \widehat{n}_{b} x_{b}}=3^{1 / 2} \frac{\lambda_{D}}{x_{b}} \int_{0}^{1} \frac{z^{2} d z}{\left[(1-z)\left(a^{+}-z\right)\left(z-a^{-}\right)\right]^{1 / 2}} \tag{14}
\end{equation*}
$$

where x_{b} / λ_{D} is determined from Eq. (11). Note that $N_{b} / 2 \widehat{n}_{b} x_{b}$ depends only on the dimensionless intensity parameter s_{b}. Typical normalized density profiles

Figure 1: Plots of the normalized density profile $2 x_{b} n_{b}^{0}(x) / N_{b}$ versus x / x_{b} for different values of the normalized beam intensity s_{b} corresponding to (a) $s_{b}=0.2$, (b) $s_{b}=0.9$, (c) $s_{b}=0.99$, (d) $s_{b}=0.999$, (e) $s_{b}=$ 0.999999 .
$2 x_{b} n_{b}^{0}(x) / N_{b}$ are illustrated in Fig. 1 for values of s_{b} ranging from $s_{b}=0.2$ to $s_{b}=0.999999$ [1]. Finally, defining the equilibrium transverse pressure profile by $P_{b}^{0}(x)=$ $\int_{-\infty}^{\infty} d p_{x}\left(p_{x}^{2} / \gamma_{b} m_{b}\right) f_{b}^{0}$, we readily obtain

$$
\begin{equation*}
P_{b}^{0}(x)=\frac{4}{3} \widehat{n}_{b} \widehat{H}_{\perp}\left[1-\frac{\psi^{0}(x)}{\widehat{H}_{\perp}}\right]^{3 / 2} \tag{15}
\end{equation*}
$$

Comparing Eqs. (5) and (15), note that $P_{b}^{0}(x)=$ const $\left[n_{b}^{0}(x)\right]^{3}$, which corresponds to a triple-adiabatic pressure relation.

LINEARIZED EQUATIONS AND STABILITY ANALISIS

The linearized Vlasov-Maxwell equations can be expressed as [2]

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+v_{x} \frac{\partial}{\partial x}-\frac{\partial \psi^{0}}{\partial x} \frac{\partial}{\partial p_{x}}\right) \delta f_{b}=v_{x} \frac{\partial \delta \psi}{\partial x} \frac{\partial F_{b}}{\partial H_{\perp}} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} \delta \psi=-\frac{4 \pi e_{b}^{2}}{\gamma_{b}^{2}} \delta n_{b} \tag{17}
\end{equation*}
$$

where $\delta n_{b}(x, t)=\int_{-\infty}^{\infty} d p_{x} \delta f_{b}$ is the perturbed number density of beam particles. In analyzing Eqs. (16) and (17), it is convenient to change variables from $\left(x, p_{x}, t\right)$ to the new variables $\left(x^{\prime}, H_{\perp}, \tau\right)$ defined by [1]

$$
\begin{equation*}
x^{\prime}=x, \quad \tau=t, \quad H_{\perp}=\frac{1}{2 \gamma_{b} m_{b}} p_{x}^{2}+\psi^{0}(x) \tag{18}
\end{equation*}
$$

Substituting Eqs. (18) into Eqs. (16) and (17) gives for the evolution of the perturbations $\delta f_{b}\left(x^{\prime}, H_{\perp}, \tau\right)$ and $\delta \psi\left(x^{\prime}, \tau\right)$,

$$
\begin{gather*}
\left(\frac{\partial}{\partial \tau}+v_{x} \frac{\partial}{\partial x^{\prime}}\right) \delta f_{b}=v_{x} \frac{\partial \delta \psi}{\partial x^{\prime}} \frac{\partial F_{b}}{\partial H_{\perp}} \tag{19}\\
\frac{\partial^{2}}{\partial x^{\prime 2}} \delta \psi=-\frac{4 \pi e_{b}^{2}}{\gamma_{b}^{2}} \delta n_{b} \tag{20}
\end{gather*}
$$

In Eq. (19), $v_{x}=+v\left(H_{\perp}, x^{\prime}\right)$ for the forward-moving particles with $v_{x}>0$, and $v_{x}=-v\left(H_{\perp}, x^{\prime}\right)$ for the backward-moving particles with $v_{x}<0$, where

$$
\begin{equation*}
v_{x}= \pm v\left(H_{\perp}, x^{\prime}\right) \equiv \pm\left(\frac{2 H_{\perp}}{\gamma_{b} m_{b}}\right)^{1 / 2}\left[1-\frac{\psi^{0}\left(x^{\prime}\right)}{H_{\perp}}\right]^{1 / 2} \tag{21}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\frac{\partial F_{b}}{\partial H_{\perp}}=-\frac{\widehat{n}_{b}}{2 \gamma_{b} m_{b} \widehat{v}_{0}} \delta\left(H_{\perp}-\widehat{H}_{\perp}\right) \tag{22}
\end{equation*}
$$

where $\widehat{v}_{0}=\left(2 \widehat{H}_{\perp} / \gamma_{b} m_{b}\right)^{1 / 2}$. Using Eqs. (19)-(22) and introducing $\delta E_{x}\left(x^{\prime}, \tau\right)=-\left(\partial / \partial x^{\prime}\right) \delta \phi\left(x^{\prime}, \tau\right)=$ $-\left(\gamma_{b}^{2} / e_{b}\right)\left(\partial / \partial x^{\prime}\right) \delta \psi\left(x^{\prime}, \tau\right)$, after some algebraic manipulation we obtain [1]

$$
\begin{align*}
\frac{\partial^{2}}{\partial \tau^{2}} \delta E_{x}-\widehat{v}_{0}^{2} N\left(x^{\prime}\right) \frac{\partial}{\partial x^{\prime}} & {\left[N\left(x^{\prime}\right) \frac{\partial}{\partial x^{\prime}} \delta E_{x}\right] } \\
& =-\frac{\widehat{\omega}_{p b}^{2}}{\gamma_{b}^{2}} N\left(x^{\prime}\right) \delta E_{x} \tag{23}
\end{align*}
$$

where $N\left(x^{\prime}\right)$ is the (dimensionless) profile shape function defined by

$$
\begin{equation*}
N\left(x^{\prime}\right)=\left[1-\frac{\psi^{0}\left(x^{\prime}\right)}{\widehat{H}_{\perp}}\right]^{1 / 2} \tag{24}
\end{equation*}
$$

In the analysis of Eq. (23), we make use of a normal-mode approach and express $\delta E_{x}\left(x^{\prime}, \tau\right)=$
$\delta \widehat{E}_{x}\left(x^{\prime}, \omega\right) \exp (-i \omega \tau)$, where ω is the (generally complex) oscillation frequency. Equation (23) can be represented in a convenient form by introducing the angle variable α defined by

$$
\begin{equation*}
\alpha=\frac{\pi}{2} \frac{X^{\prime}}{X_{b}}=\frac{\omega_{0}}{\widehat{v}_{0}} X^{\prime}, \tag{25}
\end{equation*}
$$

where X^{\prime} and ω_{0} are defined by

$$
\begin{equation*}
X^{\prime}=\int_{0}^{x^{\prime}} \frac{d x^{\prime}}{N\left(x^{\prime}\right)}, \quad \omega_{0}=\frac{\pi}{2} \frac{\widehat{v}_{0}}{X_{b}} \tag{26}
\end{equation*}
$$

where $X_{b}=X^{\prime}\left(x_{b}\right)$. Substituting Eq. (25) into Eq. (23) gives the eigenvalue equation

$$
\begin{equation*}
\omega_{0}^{2} \frac{\partial^{2}}{\partial \alpha^{2}} \delta \widehat{E}_{x}+\left[\omega^{2}-\frac{\widehat{\omega}_{p b}^{2}}{\gamma_{b}^{2}} N(\alpha)\right] \delta \widehat{E}_{x}=0 \tag{27}
\end{equation*}
$$

Equation (27) is to be solved over the interval $-\pi / 2<$ $\alpha<\pi / 2$ subject to the boundary conditions $\delta \widehat{E}_{x}(\alpha=$ $\pm \pi / 2, \omega)=0$. Substituting Eqs. (10) and (24) into Eq. (25) gives

$$
\begin{equation*}
\alpha=\frac{\pi}{2} \frac{\lambda_{D}}{X_{b}} 3^{1 / 2} \int_{N}^{1} \frac{d z}{\left[(1-z)\left(a^{+}-z\right)\left(z-a^{-}\right)\right]^{1 / 2}} \tag{28}
\end{equation*}
$$

where $a^{ \pm}$is defined in Eq. (12). Some algebraical manipulation gives exactly for the inverse function $N(\alpha)$

$$
\begin{equation*}
N(\alpha)=\frac{\left[1-a^{+} \kappa^{2} \operatorname{sn}^{2}\left(\frac{\alpha}{\pi} \frac{X_{b}}{\lambda_{D}}\left[\frac{a^{+}-a^{-}}{3}\right]^{1 / 2}, \kappa\right)\right]}{\left[1-\kappa^{2} \operatorname{sn}^{2}\left(\frac{\alpha}{\pi} \frac{X_{b}}{\lambda_{D}}\left[\frac{a^{+}-a^{-}}{3}\right]^{1 / 2}, \kappa\right)\right]} \tag{29}
\end{equation*}
$$

where $\operatorname{sn}(\beta, \kappa)$ is the Jacobi elliptic sine function and $\kappa=$ $\left[\left(1-a^{+}\right) /\left(a^{+}-a^{-}\right)\right]^{1 / 2}$. In Eqs. (28)-(29), the "stretched" half-layer thickness $\left(X_{b}\right)$ measured in units of the Debye length $\left(\lambda_{D}\right)$ is given by

$$
\begin{equation*}
\frac{X_{b}}{\lambda_{D}}=\frac{2 \cdot 3^{1 / 2}}{\left(a^{+}-a^{-}\right)^{1 / 2}} F\left(\arcsin \left(\kappa^{2} / a^{+}\right)^{-1 / 2}, \kappa\right) \tag{30}
\end{equation*}
$$

where F is the elliptic integral of the first kind. Using the expression for $N(\alpha)$ in Eq. (29), the eigenvalue equation (27) can be solved numerically for $\delta \widehat{E}_{x}(\alpha, \omega)$ and the eigenvalues ω^{2} subject to the boundary conditions $\widehat{E}_{x}(\alpha=$ $\pm \pi / 2, \omega)=0$. An approximate expression for the eigenvalues of the Schroedinger-like equation (27) can be obtained in the WKB approximation. The Born-Zommerfeld formula, when applied to Eq. (27), gives

$$
\begin{equation*}
\frac{\widehat{\omega}_{p b}}{\gamma_{b} \omega_{0}} \int_{-\pi / 2}^{\pi / 2} d \alpha\left[\left(\frac{\gamma_{b} \omega_{m}}{\widehat{\omega}_{p b}}\right)^{2}-N(\alpha)\right]^{1 / 2}=\pi m \tag{31}
\end{equation*}
$$

where ω_{m} is the m th-mode eigenfrequency with m halfwavelength oscillations of $\delta \widehat{E}_{x}$ over the layer thickness.

Making use of Eq. (28), the result in Eq. (31) can be rewritten as

$$
\begin{equation*}
6^{1 / 2} \int_{0}^{1} \frac{d z\left(q_{m}^{2}-z\right)^{1 / 2}}{\left[(1-z)\left(a^{+}-z\right)\left(z-a^{-}\right)\right]^{1 / 2}}=\pi m \tag{32}
\end{equation*}
$$

where q_{m} and r are defined by $q_{m}=\omega_{m} /\left(\widehat{\omega}_{p b} / \gamma_{b}\right)$ and $r=\kappa\left[\left(q_{m}^{2}-a^{+}\right) /\left(q_{m}^{2}-1\right)\right]^{1 / 2}$. Equation (32) has been

Figure 2: Plots of the normalized mode frequencies $\omega_{m} / \omega_{\beta \perp}$ versus the on-axis $(x=0)$ tune depression $\nu / \nu_{0}=\left(1-s_{b}\right)^{1 / 2}$ for several values of mode numbers $m=1,2,3,4$. The dotted curves are the numerical solutions of the eigenvalue equation (27); the solid curves are the solutions obtained in the WKB approximation [Eq. (32)].
solved numerically [1] for ω_{m}^{2}, and the results have been compared with the numerical solutions of the eigenvalue equation (27) (Fig. 2). In Fig. 2, the convention is such that there are m half-wavelength oscillations of $\delta \widehat{E}_{x}$ over the layer thickness. Note that low beam intensity $\left(s_{b} \ll 1\right)$ corresponds to $\nu / \nu_{0} \rightarrow 1$, with $\omega_{m} \simeq m \omega_{\beta \perp}$, whereas the space-charge-dominated regime $\left(s_{b} \rightarrow 1\right)$ corresponds to $\nu / \nu_{0} \rightarrow 0$, with $\omega_{m} \simeq \omega_{\beta \perp} \simeq \widehat{\omega}_{p b} / \gamma_{b}$.

To summarize, we have demonstrated that the selfconsistent waterbag equilibrium f_{b}^{0} satisfying the steadystate $(\partial / \partial t=0)$ Vlasov-Maxwell equations is exactly solvable for the beam density $n_{b}^{0}(x)$ and electrostatic potential $\phi^{0}(x)$. In addition, we derived a closed Schroedinger-like eigenvalue equation for small-amplitude perturbations $\left(\delta f_{b}, \delta \phi\right)$ about the self-consistent waterbag equilibrium in Eq. (4). In the eigenvalue equation, the density profile $n_{b}^{0}(x)$ plays the role of the potential $V(x)$ in the Schroedinger equation. The eigenvalue equation was investigated analytically and numerically, and the eigenfrequencies were shown to be purely real.

REFERENCES

[1] E. A. Startsev and R. C. Davidson, Phys. Rev. Special Topics on Accelerators and Beams 6, 044401 (2003).
[2] R. C. Davidson and H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators (World Scientific, Singapore, 2001), and references therein.
[3] The integrals in Eqs. (11), (14), (28), (32) can be expressed in terms of elliptic functions (see Ref. 1).

