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Abstract

A self-consistent one-dimensional waterbag equilibrium
f0

b (x, px) for a sheet beam propagating through a smooth
focusing field is shown to be exactly solvable for the
beam density n0

b(x) and space-charge potential φ0(x). A
closed Schrodinger-like eigenvalue equation is derived for
small-amplitude perturbations, and the WKB approxima-
tion is employed to determine the eigenfrequency spec-
trum as a function of the normalized beam intensity sb =
ω̂2

pb/γ2
b ω2

β⊥, where ω̂2
pb = 4πn̂be

2
b/γbmb is the relativis-

tic plasma frequency-squared and n̂b = nb(x = 0) is the
on-axis number density of beam particles.

SHEET BEAM EQUILIBRIUM WITH
UNIFORM PHASE-SPACE DENSITY

We consider an intense sheet beam [1], made up of parti-
cles with charge eb and rest mass mb, which propagates in
the z-direction with directed kinetic energy (γb − 1)mbc

2

and average axial velocity Vb = βbc = const. Here,
γb = (1 − β2

b )−1/2 is the relativistic mass factor, c is the
speed of light in vacuo, and the beam is assumed to be uni-
form in the y- and z- directions with ∂/∂y = 0 = ∂/∂z.
The beam is centered in the x - direction at x = 0, and
transverse confinement is provided by an applied focusing
force, F foc

x = −γbmbω
2
β⊥x, with ω2

β⊥ = const in the
smooth focusing approximation. The transverse dimension
of the sheet beam is denoted by 2xb, and planar, perfectly
conducting walls are located at x = ±xw. The particle mo-
tion in the beam frame is assumed to be nonrelativistic, and
we introduce the effective potential ψ(x, t) defined by

ψ(x, t) =
1
2
γbmbω

2
β⊥x2 +

1
γ2

b

ebφ(x, t). (1)

The Vlasov-Maxwell equations describing the self-
consistent nonlinear evolution of fb(x, px, t) and ψ(x, t)
can be expressed as [2](

∂

∂t
+ vx

∂

∂x
− ∂ψ

∂x

∂

∂px

)
fb = 0, (2)

and
∂2ψ

∂x2
= γbmbω

2
β⊥ − 4πe2

b

γ2
b

∫ ∞

−∞
dpxfb. (3)

As an equilibrium example (∂/∂t = 0) that is analyti-
cally tractable, we consider the choice of distribution func-
tion

Fb(H⊥) =
n̂b

(8γbmbĤ⊥)1/2
Θ(H⊥ − Ĥ⊥), (4)
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where H⊥ = p2
x/2γbmb+ψ0(x) is the transverse Hamilto-

nian, Θ(x) is the Heaviside step-function, and n̂b, Ĥ⊥ are
positive constants. Evaluating the number density n0

b(x) =∫ ∞
−∞ dpxFb(H⊥), we readily obtain

n0
b(x) =

{
n̂b

[
1 − ψ0(x)/Ĥ⊥

]1/2

,−xb < x < xb,

0, |x| > xb.
(5)

Here, the location of the beam edge (x = ±xb) is deter-
mined from

ψ0(x = ±xb) = Ĥ⊥, (6)

where ψ0(x = 0) = 0 is assumed. It is useful to introduce
the effective Debye length λD defined by

λ2
D =

γ3
b Ĥ⊥

4πn̂be2
b

=
1
2

γ2
b v̂2

0

ω̂2
pb

. (7)

Here, v̂0 = (2Ĥ⊥/γbmb)1/2 is the maximum speed of a
particle with energy Ĥ⊥ as it passes through x = 0. Sub-
stituting Eq. (5) into Eq. (3) then gives

∂2

∂x2

(
ψ0(x)

Ĥ⊥

)
=

1
λ2

D

(
1
sb

−
[
1 − ψ0(x)

Ĥ⊥

]1/2
)

(8)

in the beam interior (−xb < x < xb). Equation (8) is to be
integrated subject to the boundary conditions

[
ψ0

]
x=0

=
0 =

[
∂ψ0/∂x

]
x=0

. For physically acceptable solutions to
Eq. (8), the condition

[
∂2ψ0/∂x2

]
x=0

> 0 imposes the re-
quirement that sb lies in the interval 0 < sb < 1, where
sb = ω̂2

pb/γ2
b ω2

β⊥. The regime sb � 1 corresponds to
a low-intensity, emittance-dominated beam, whereas the
regime sb → 1 corresponds to a low-emittance, space-
charge-dominated beam. In solving Eq. (8), it is convenient
to introduce the dimensionless variables defined by

X =
x

λD
, ψ̂0(X) =

ψ0(x)

Ĥ⊥
. (9)

Substituting Eq. (9) into Eq. (8), integrating once, and en-
forcing

[
ψ0

]
x=0

= 0 =
[
∂ψ0/∂x

]
x=0

, gives

1
2

(
dψ̂0

dX

)2

=
1
sb

ψ̂0 +
2
3

[
(1 − ψ̂0)3/2 − 1

]
(10)

in the interval −xb/λD ≤ X ≤ xb/λD. Equation (10)
can be integrated exactly to determine X as a function of
(1 − ψ̂0)1/2 = n0

b(X)/n̂b [see Eq. (5)]. We express X =
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∫ ψ̂0

0
dψ̂0/(dψ̂0/dX), change variables to z = (1− ψ̂0)1/2,

and make use of Eq. (10). This gives [1, 3]

X = 31/2

∫ 1

(1−ψ̂0)1/2

zdz

[(1 − z)(a+ − z)(z − a−)]1/2
,

(11)
where a+ and a− are defined by

a± =
1

4sb
{3 − 2sb ± [3(3 + 4sb − 4s2

b)]
1/2}. (12)

From Eqs. (6) and (11) we obtain a closed expression for
xb/λD in terms of the normalized beam intensity sb for the
choice of equilibrium distribution function in Eq. (4). The
areal density of the beam particles, Nb =

∫ xb

−xb
dxn0

b(x),
for the density profile in Eq. (5) can be expressed as

Nb = 2n̂b

∫ xb

0

dx[1 − ψ0(x)/Ĥ⊥]1/2. (13)

Some algebraical manipulation that make use of Eqs. (9),
(10) and (13) gives

Nb

2n̂bxb
= 31/2 λD

xb

∫ 1

0

z2dz

[(1 − z)(a+ − z)(z − a−)]1/2
,

(14)
where xb/λD is determined from Eq. (11). Note that
Nb/2n̂bxb depends only on the dimensionless inten-
sity parameter sb. Typical normalized density profiles

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
1.2

x/x
b

2
x
 
n
 
(
x
)
/
N

b
b

0
b

a
b c

d

e

Figure 1: Plots of the normalized density profile
2xbn

0
b(x)/Nb versus x/xb for different values of the nor-

malized beam intensity sb corresponding to (a) sb = 0.2,
(b) sb = 0.9, (c) sb = 0.99, (d) sb = 0.999, (e) sb =
0.999999.

2xbn
0
b(x)/Nb are illustrated in Fig.1 for values of sb rang-

ing from sb = 0.2 to sb = 0.999999 [1]. Finally, defin-
ing the equilibrium transverse pressure profile by P 0

b (x) =∫ ∞
−∞ dpx(p2

x/γbmb)f0
b , we readily obtain

P 0
b (x) =

4
3
n̂bĤ⊥

[
1 − ψ0(x)

Ĥ⊥

]3/2

. (15)

Comparing Eqs. (5) and (15), note that P 0
b (x) =

const[n0
b(x)]3, which corresponds to a triple-adiabatic

pressure relation.

LINEARIZED EQUATIONS AND
STABILITY ANALISIS

The linearized Vlasov-Maxwell equations can be ex-
pressed as [2](

∂

∂t
+ vx

∂

∂x
− ∂ψ0

∂x

∂

∂px

)
δfb = vx

∂δψ

∂x

∂Fb

∂H⊥
, (16)

and
∂2

∂x2
δψ = −4πe2

b

γ2
b

δnb, (17)

where δnb(x, t) =
∫ ∞
−∞ dpxδfb is the perturbed number

density of beam particles. In analyzing Eqs. (16) and (17),
it is convenient to change variables from (x, px, t) to the
new variables (x′,H⊥, τ) defined by [1]

x′ = x, τ = t, H⊥ =
1

2γbmb
p2

x + ψ0(x). (18)

Substituting Eqs. (18) into Eqs. (16) and (17) gives for
the evolution of the perturbations δfb(x′,H⊥, τ) and
δψ(x′, τ),(

∂

∂τ
+ vx

∂

∂x′

)
δfb = vx

∂δψ

∂x′
∂Fb

∂H⊥
, (19)

∂2

∂x′2 δψ = −4πe2
b

γ2
b

δnb. (20)

In Eq. (19), vx = +v(H⊥, x′) for the forward-moving
particles with vx > 0, and vx = −v(H⊥, x′) for the
backward-moving particles with vx < 0, where

vx = ±v(H⊥, x′) ≡ ±
(

2H⊥
γbmb

)1/2 [
1 − ψ0(x′)

H⊥

]1/2

.

(21)
Furthermore,

∂Fb

∂H⊥
= − n̂b

2γbmbv̂0
δ(H⊥ − Ĥ⊥), (22)

where v̂0 = (2Ĥ⊥/γbmb)1/2. Using Eqs. (19)-(22)
and introducing δEx(x′, τ) = −(∂/∂x′)δφ(x′, τ) =
−(γ2

b /eb)(∂/∂x′)δψ(x′, τ), after some algebraic manipu-
lation we obtain [1]

∂2

∂τ2
δEx − v̂2

0N(x′)
∂

∂x′

[
N(x′)

∂

∂x′ δEx

]
= −

ω̂2
pb

γ2
b

N(x′)δEx, (23)

where N(x′) is the (dimensionless) profile shape function
defined by

N(x′) =
[
1 − ψ0(x′)

Ĥ⊥

]1/2

. (24)

In the analysis of Eq. (23), we make use of
a normal-mode approach and express δEx(x′, τ) =

2979
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δÊx(x′, ω) exp (−iωτ), where ω is the (generally com-
plex) oscillation frequency. Equation (23) can be repre-
sented in a convenient form by introducing the angle vari-
able α defined by

α =
π

2
X ′

Xb
=

ω0

v̂0
X ′, (25)

where X ′ and ω0 are defined by

X ′ =
∫ x′

0

dx′

N(x′)
, ω0 =

π

2
v̂0

Xb
, (26)

where Xb = X ′(xb). Substituting Eq. (25) into Eq. (23)
gives the eigenvalue equation

ω2
0

∂2

∂α2
δÊx +

[
ω2 −

ω̂2
pb

γ2
b

N(α)

]
δÊx = 0. (27)

Equation (27) is to be solved over the interval −π/2 <

α < π/2 subject to the boundary conditions δÊx(α =
±π/2, ω) = 0. Substituting Eqs. (10) and (24) into Eq.
(25) gives

α =
π

2
λD

Xb
31/2

∫ 1

N

dz

[(1 − z)(a+ − z)(z − a−)]1/2
, (28)

where a± is defined in Eq. (12). Some algebraical manip-
ulation gives exactly for the inverse function N(α)

N(α) =

[
1 − a+κ2sn2

(
α
π

Xb

λD

[
a+−a−

3

]1/2

, κ

)]
[
1 − κ2sn2

(
α
π

Xb

λD

[
a+−a−

3

]1/2

, κ

)] , (29)

where sn(β, κ) is the Jacobi elliptic sine function and κ =
[(1−a+)/(a+−a−)]1/2. In Eqs. (28)-(29), the ”stretched”
half-layer thickness (Xb) measured in units of the Debye
length (λD) is given by

Xb

λD
=

2 · 31/2

(a+ − a−)1/2
F

(
arcsin (κ2/a+)−1/2, κ

)
, (30)

where F is the elliptic integral of the first kind. Using
the expression for N(α) in Eq. (29), the eigenvalue equa-
tion (27) can be solved numerically for δÊx(α, ω) and the
eigenvalues ω2 subject to the boundary conditions Êx(α =
±π/2, ω) = 0. An approximate expression for the eigen-
values of the Schroedinger-like equation (27) can be ob-
tained in the WKB approximation. The Born-Zommerfeld
formula, when applied to Eq. (27), gives

ω̂pb

γbω0

∫ π/2

−π/2

dα

[(
γbωm

ω̂pb

)2

− N(α)

]1/2

= πm, (31)

where ωm is the mth-mode eigenfrequency with m half-
wavelength oscillations of δÊx over the layer thickness.

Making use of Eq. (28), the result in Eq. (31) can be rewrit-
ten as

61/2

∫ 1

0

dz(q2
m − z)1/2

[(1 − z)(a+ − z)(z − a−)]1/2
= πm, (32)

where qm and r are defined by qm = ωm/(ω̂pb/γb) and
r = κ[(q2

m − a+)/(q2
m − 1)]1/2. Equation (32) has been
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Figure 2: Plots of the normalized mode frequencies
ωm/ωβ⊥ versus the on-axis (x = 0) tune depression
ν/ν0 = (1 − sb)1/2 for several values of mode numbers
m = 1, 2, 3, 4. The dotted curves are the numerical so-
lutions of the eigenvalue equation (27); the solid curves
are the solutions obtained in the WKB approximation [Eq.
(32)].

solved numerically [1] for ω2
m, and the results have been

compared with the numerical solutions of the eigenvalue
equation (27) (Fig. 2). In Fig. 2, the convention is such
that there are m half-wavelength oscillations of δÊx over
the layer thickness. Note that low beam intensity (sb � 1)
corresponds to ν/ν0 → 1, with ωm � mωβ⊥, whereas the
space-charge-dominated regime (sb → 1) corresponds to
ν/ν0 → 0, with ωm � ωβ⊥ � ω̂pb/γb.

To summarize, we have demonstrated that the self-
consistent waterbag equilibrium f0

b satisfying the steady-
state (∂/∂t = 0) Vlasov-Maxwell equations is ex-
actly solvable for the beam density n0

b(x) and electro-
static potential φ0(x). In addition, we derived a closed
Schroedinger-like eigenvalue equation for small-amplitude
perturbations (δfb, δφ) about the self-consistent waterbag
equilibrium in Eq. (4). In the eigenvalue equation, the den-
sity profile n0

b(x) plays the role of the potential V (x) in
the Schroedinger equation. The eigenvalue equation was
investigated analytically and numerically, and the eigenfre-
quencies were shown to be purely real.
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